閉集合系の公理→Kuratowskiの閉包公理系
閉集合系の公理$ \land\overline\bullet:2^X\ni A\mapsto\bigcap\{C\in\mathcal C\mid A\subseteq C\}\in\mathcal CからKuratowskiの閉包公理系$ \land\mathcal C=\{C\in2^X\mid\overline{C}=C\}を導く (K1)$ \bar\varnothing=\varnothing
$ \because\bar\varnothing=\bigcap\{C\in\mathcal C\mid\varnothing\subseteq C\}
$ =\bigcap\mathcal C
$ =\varnothing
$ \because閉集合系の公理(C1)より$ \bigcap\mathcal C=\varnothing\cap\cdots=\varnothing (K2)$ \forall A\in2^X:A\subseteq\bar A
$ \because\forall A\in2^X\forall x:
$ x\in A
$ \implies\forall C:(A\subseteq C\implies x\in A\subseteq C)
$ \implies\forall C\in\mathcal C:(A\subseteq C\implies x\in C)
$ \iff x\in\bar A
(K3)$ \forall A\in2^X:\bar{\bar{A}}=\bar A
$ \because\forall A:
$ A\in2^X
$ \implies \bar A\subseteq\bar{\bar{A}}
$ \because(K2)
$ \implies \bar A\subseteq\bar{\bar{A}}\land\forall C\in\mathcal C:(\bar A\subseteq C\implies\bar{\bar{A}}\subseteq C)
$ \implies\bar{\bar{A}}=\bar A
$ \because\bar A\in\mathcal C
(K4)$ \forall A,B\in 2^X:\overline{A\cup B}=\bar A\cup\bar B
$ \because\forall A,B\in2^X\forall x:
$ x\in\overline{A\cup B}
$ \iff\forall C\in\mathcal C:(A\cup B\subseteq C\implies x\in C)
$ \iff\forall C\in\mathcal C:((A\subseteq C\implies x\in C)\lor(B\subseteq C\implies x\in C))
$ \implies x\in\bar A\cup\bar B
$ \iff x\in\bar A\cup\bar B\land\bar A\subseteq\overline{A\cup B}\land\bar B\subseteq\overline{A\cup B}
$ \implies x\in\overline{A\cup B}
$ \overline{C}=C
$ \iff C=\min\{C'\in\mathcal C\mid C\subseteq C'\}
$ \iff C\in\mathcal C\land\forall C'\in\mathcal C:(C\subseteq C'\implies C\subseteq C')
$ \iff C\in\mathcal C
$ \underline{\therefore\mathcal C=\{C\in2^X\mid\overline{C}=C\}\quad}_\blacksquare