速度勾配tensor
$ \bm l:=\bm\nabla\bm v
空間速度$ \bm{v}の勾配
性質
変形勾配tensor$ \bm Fとの関係
$ \bm l=\left.(\dot{\bm{F}}\cdot{\bm{F}^{-1}})\right|_{\bm{X}=\bm{\phi}^{-1}(\bm{x},t)}
導出
$ \bm{l}:=\bm{\nabla}\bm{v}
$ =\bm{\nabla}\dot{\bm{\phi}}(\bm{\phi}^{-1}(\bm{x},t),t)
$ =\left.\bm{\nabla}\dot{\bm{\phi}}\right|_{\bm{X}=\bm{\phi}^{-1}(\bm{x},t)}\cdot\bm{\nabla}\bm{\phi}^{-1}(\bm{x},t)
$ =\dot{\bm{F}}(\bm{\phi}^{-1}(\bm{x},t),t)\cdot{\bm{F}(\bm{\phi}^{-1}(\bm{x},t),t)}^{-1}
$ =\left.(\dot{\bm{F}}\cdot{\bm{F}^{-1}})\right|_{\bm{X}=\bm{\phi}^{-1}(\bm{x},t)}
tensorの直和分解を使って変形速度tensor$ \bm dとspin tensor$ \bm wに分解できる
$ \bm l=\bm d+\bm w
#2024-11-22 11:06:49
#2024-09-23 09:57:01
#2024-03-18 23:00:15
#2024-01-02 14:30:56