速度勾配tensor
$ \bm l:=\bm v\overleftarrow{\bm\nabla}
空間速度$ \bm{v}の勾配
$ \bm\nabla\bm vから$ \bm v\overleftarrow{\bm\nabla}に書き換え中
性質
変形勾配tensor$ \bm Fとの関係
$ \bm l=\left.(\dot{\bm{F}}\cdot{\bm{F}^{-1}})\right|_{\bm{X}=\bm{\phi}^{-1}(\bm{x},t)}
導出
$ \bm{l}:=\bm v\overleftarrow{\bm\nabla}
$ =\dot{\bm{\phi}}(\bm{\phi}^{-1}(\bm{x},t),t)\overleftarrow{\bm\nabla}
$ =\left.\dot{\bm{\phi}}\overleftarrow{\bm\nabla}\right|_{\bm{X}=\bm{\phi}^{-1}(\bm{x},t)}\cdot\bm{\phi}^{-1}(\bm{x},t)\overleftarrow{\bm\nabla}
$ =\dot{\bm{F}}(\bm{\phi}^{-1}(\bm{x},t),t)\cdot{\bm{F}(\bm{\phi}^{-1}(\bm{x},t),t)}^{-1}
$ \because変形勾配tensorの逆tensor
$ =\left.(\dot{\bm{F}}\cdot{\bm{F}^{-1}})\right|_{\bm{X}=\bm{\phi}^{-1}(\bm{x},t)}
tensorの直和分解を使って変形速度tensor$ \bm dとspin tensor$ \bm wに分解できる
$ \bm l=\bm d+\bm w
性質
速度勾配tensorの時間変化率$ \frac{\mathrm D\bm l}{\mathrm Dt}=\frac{\mathrm D\bm v}{\mathrm Dt}\overleftarrow{\bm\nabla}-\bm l^2
#2025-06-15 13:12:17
#2025-06-09 18:04:30
#2024-11-22 11:06:49
#2024-09-23 09:57:01
#2024-03-18 23:00:15
#2024-01-02 14:30:56