変形勾配tensorの時間微分
$ \dot{\bm F}=\frac{\partial\bm F}{\partial t}=\dot{\bm\phi}\overleftarrow{\bm\nabla}
$ \dot{{\bm F}^{-1}}=\frac{\partial\bm F^{-1}}{\partial t}
$ =-{\bm F}^{-1}\cdot\dot{\bm F}\cdot{\bm F}^{-1}
$ =-{\bm F}^{-1}\cdot\left.\bm l\right|_{\bm x=\bm\phi(\bm X,t)}
$ {\dot{\bm F}}^{-1}={\frac{\partial\bm F}{\partial t}}^{-1}\neq\dot{{\bm F}^{-1}}
$ \dot{\bm F^\top}=\dot{{\bm\phi\overleftarrow{\bm\nabla}}^\top}={\dot{\bm\phi}\overleftarrow{\bm\nabla}}^\top=\dot{\bm F}^\top
全微分
$ \mathrm d\dot{\bm\phi}=\dot{\bm F}\cdot\mathrm d\bm X+\ddot{\bm\phi}\mathrm dt
逆函数の微分
$ \frac{\partial\bm\phi^{-1}\overleftarrow{\bm\nabla}}{\partial t}=\frac{\partial}{\partial t}\left(\left.{\bm F}^{-1}\right|_{\bm X=\bm\phi^{-1}(\bm x,t)}\right)
$ = \left.{\bm F}^{-1}\overleftarrow{\bm\nabla}\right|_{\bm X=\bm\phi^{-1}(\bm x,t)}\cdot\dot{\bm\phi^{-1}}+\left.\dot{{\bm F}^{-1}}\right|_{\bm X=\bm\phi^{-1}(\bm x,t)}
$ \bm x=\bm\phi(\bm\phi^{-1}(\bm x,t),t)
$ \bm0=\frac{\partial}{\partial t}\bm\phi(\bm\phi^{-1}(\bm x,t),t)=\left.\bm F\right|_{\bm X=\bm\phi^{-1}(\bm x,t)}\cdot\frac{\partial\bm\phi^{-1}}{\partial t}+\bm v
$ \iff \dot{\bm\phi^{-1}}=-\left.{\bm F}^{-1}\right|_{\bm X=\bm\phi^{-1}(\bm x,t)}\cdot\bm v