normから誘導した距離函数
norm$ \lVert\bullet\rVert:V\to\Rから誘導される距離函数$ d:V^2\ni(\bm u,\bm v)\mapsto\lVert\bm u-\bm v\rVert\in\Rのこと 1. 非退化性$ \forall\bm u,\bm v\in V: $ d(\bm u,\bm v)=0
$ \iff\lVert\bm u-\bm v\rVert=0
$ \iff\bm u-\bm v=\bm 0
$ \iff\bm u=\bm v
$ \underline{\therefore\forall\bm u,\bm v\in V:d(\bm u,\bm v)=0\implies\bm u=\bm v\quad}_\blacksquare
2. 対称律$ \forall\bm u,\bm v\in V: $ d(\bm u,\bm v)=\lVert\bm u-\bm v\rVert
$ = \lVert-(\bm v-\bm u)\rVert
$ = |-1|\lVert\bm v-\bm u\rVert
$ = \lVert\bm v-\bm u\rVert
$ =d(\bm v,\bm u)
$ \underline{\therefore\forall\bm u,\bm v\in V:d(\bm u,\bm v)=d(\bm v,\bm u)\quad}_\blacksquare
3. 劣加法性$ \forall\bm u,\bm v,\bm w\in V: $ d(\bm u,\bm w)=\lVert\bm u-\bm w\rVert
$ =\lVert(\bm u-\bm v)+(\bm v-\bm w)\rVert
$ \le\lVert\bm u-\bm v\rVert+\lVert\bm v-\bm w\rVert
$ =d(\bm u,\bm v)+d(\bm v,\bm w)
$ \underline{\therefore\forall\bm u,\bm v,\bm w\in V:d(\bm u,\bm w)\le d(\bm u,\bm v)+d(\bm v,\bm w)\quad}_\blacksquare