MaA-2025F-5.@2025-05-19T13:00D90
周期$ Tの実函数$ f(t)=f(t+T)のFourier級数が次式になる
$ f(t)\sim \frac{V_0}{2} + \sum_{n\in\N} V_n \cos\left(\frac{2\pi n}{T} t\right) + \sum_{n\in\N} b_n \sin\left(\frac{2\pi n}{T} t\right) (4.1)
『関数解析からのフーリエ級数とフーリエ変換』の定義とは若干ことなる
Fourier級数・Fourier変換の係数倍のvariationがいろいろあるtakker.icon
$ V_\bullet,b_\bulletをFourier係数と呼ぶ
$ \frac 1Tを基本周波数と呼ぶ
基本周波数の整数倍の周波数を持つ波を高調波と呼ぶ
下準備に、三角函数の直交性を求めておく
$ \int_0^1\sin\pi nt\cos\pi kt\mathrm dt=\frac12\int_0^1(\sin\pi(n+k)t+\sin\pi(n-k)t)\mathrm dt
$ \because三角函数の積和変換式
$ = \frac12\int_0^1\mathrm d\left(-\frac1{n+k}\cos\pi(n+k)t\llbracket n+k\neq 0\rrbracket-\frac1{n-k}\cos\pi(n-k)t\llbracket n\neq k\rrbracket\right)
$ =\frac12\left(-\frac1{n+k}\llbracket n+k\neq0\rrbracket-\frac1{n-k}\llbracket n\neq k\rrbracket+\frac1{n+k}\llbracket n+k\neq0\rrbracket+\frac1{n-k}\llbracket n\neq k\rrbracket\right)
$ =0
$ \int_0^1\cos\pi nt\cos\pi kt\mathrm dt=\frac12\int_0^1(\cos\pi(n+k)t+\cos\pi(n-k)t)\mathrm dt
$ = \frac12\int_0^1\mathrm d\left(\frac1{n+k}\sin\pi(n+k)t\llbracket n+k\neq 0\rrbracket+\frac1{n-k}\sin\pi(n-k)t\llbracket n\neq k\rrbracket+t\llbracket n+k=0\rrbracket+t\llbracket n=k\rrbracket\right)
$ = \frac12(1-0)(\llbracket n+k=0\rrbracket+\llbracket n=k\rrbracket)
$ = \frac12(\llbracket n+k=0\rrbracket+\llbracket n=k\rrbracket)
Fourier級数を求める
$ \frac2T \int_0^T f(t) \cos\left(\frac{2\pi k}{T} t\right)\mathrm dt=\frac{V_0}{T}\int_0^T\cos\left(\frac{2\pi k}{T} t\right)\mathrm dt + \sum_{n\in\N} \frac2TV_n \int_0^T\cos\left(\frac{2\pi n}{T} t\right)\cos\left(\frac{2\pi k}{T} t\right)\mathrm dt + \sum_{n\in\N} \frac2Tb_n\int_0^T\sin\left(\frac{2\pi n}{T} t\right)\cos\left(\frac{2\pi k}{T} t\right)\mathrm dt
$ = 0+\sum_{n\in\N}V_n(\llbracket n+k=0\rrbracket+\llbracket n=k\rrbracket)+0
$ =V_k
$ \frac2T \int_0^T f(t) \sin\left(\frac{2\pi k}{T} t\right)\mathrm dt=\frac{V_0}{T}\int_0^T\sin\left(\frac{2\pi k}{T} t\right)\mathrm dt + \sum_{n\in\N} \frac2TV_n \int_0^T\cos\left(\frac{2\pi n}{T} t\right)\sin\left(\frac{2\pi k}{T} t\right)\mathrm dt + \sum_{n\in\N} \frac2Tb_n\int_0^T\sin\left(\frac{2\pi n}{T} t\right)\sin\left(\frac{2\pi k}{T} t\right)\mathrm dt
$ = -\frac{V_0}{2\pi k}\left(\cos 2\pi k-1\right)+0+\sum_{n\in\N}b_n(-\llbracket n+k=0\rrbracket+\llbracket n=k\rrbracket)
$ =b_k
$ \therefore V_k=\frac2T \int_0^T f(t) \cos\left(\frac{2\pi k}{T} t\right)\mathrm dt
$ \therefore b_k=\frac2T \int_0^T f(t) \sin\left(\frac{2\pi k}{T} t\right)\mathrm dt
Fourier級数を実表示から複素表示に変換する
$ \frac{V_0}{2} + \sum_{n\in\N} V_n \cos\left(\frac{2\pi n}{T} t\right) + \sum_{n\in\N} b_n \sin\left(\frac{2\pi n}{T} t\right)
$ =\sum_{n\in\Z}c_ne^{\frac{2\pi i}{T}nt}
$ c_n:=\frac12(V_n-ib_n)と
$ c_{-n}:={c_n}^*としたした
$ b_0:=0とした
$ c_nを複素Fourier係数と呼ぶ
固有振動数$ \omega:=\frac{2\pi}Tを定義して$ f(t)\sim\sum_{n\in\Z}c_ne^{i\omega nt}となる
$ c_nを複素Fourier係数と呼ぶ
複素Fourier係数$ c_nを求める
$ \frac1T\int_0^Tf(t)e^{-i\omega kt}\mathrm dt=\frac1T\sum_{n\in\Z}c_n\int_0^Te^{i\omega(n-k)t}\mathrm dt
$ = \frac1T\sum_{n\in\Z}c_n\int_{t=0}^{t=T}\mathrm d\left(\frac{1}{i\omega}\frac1{n-k}e^{i\omega(n-k)t}\llbracket n\neq k\rrbracket+t\llbracket n=k\rrbracket\right)
$ = \frac1T\sum_{n\in\Z}c_n\left(\frac{1}{i\omega}\frac1{n-k}(e^{i\omega(n-k)T}-1)\llbracket n\neq k\rrbracket+(T-0)\llbracket n=k\rrbracket\right)
$ = \sum_{n\in\Z}c_n(0+\llbracket n=k\rrbracket)
$ =c_k
$ \therefore c_k=\frac1T\int_0^Tf(t)e^{-i\omega kt}\mathrm dt
これがFourier変換そのものとなる
周期函数に限定したver.
$ \mathcal F(f)(\omega n):=\frac1T\int_0^Tf(t)e^{-i\omega nt}\mathrm dt
$ \mathcal F^{-1}(f)(t):=\sum_{n\in\Z}f(\omega n)e^{i\omega nt}
TODO: 線型空間を構成して、線型空間の記法で解き直す
TODO: Fourier級数・Fourier変換の係数倍のvariationを整理する
#2025-05-19 13:01:11
#2025-05-12 13:45:39