左指数随伴系
summary.icon
signature.icon
code:left_exponential_adjunction.sig
a.LExpAdjs
= Adjunction C C (a⊗) (a⊸) a.unit a.eval
where
MonoidalCategory C ⊗ _ _ _ _ in &
&1-morph
(a⊸) : C -> C
&2-morph
a.unit : C^ => (a⊗) * (a⊸)
a.eval : (a⊸) * (a⊗) => C^
definition.icon
モノイダル圏$ C における
$ \mathrm{LExpAdjs}[a]
$ =\left\langle (a⊗) \dashv (a⊸) ,{}^a\mathrm{unit} ,{}^a\mathrm{eval} \right\rangle
随伴対
$ (a⊗) \colon C→C
$ (a⊸) = {}^a\_\colon C→C
https://gyazo.com/a06d2918b4910e35cd3f330eb7c9a07e
$ ^a\mathrm{unit} \colon C^\wedge ⇒ (a⊗) * (a⊸)
i.e.
$ {}^a\mathrm{unit}_z\colon z→a⊸(a\otimes z)
$ ^a\mathrm{eval} \colon (a⊸) * (a⊗) ⇒ C^\wedge
i.e.
$ {}^a\mathrm{eval}_z\colon a\otimes (a⊸z)→z
https://gyazo.com/8f8819411c213153b86172e78b5fec58
https://gyazo.com/484b8f6204b6ae732212938de933fef6
https://gyazo.com/250b9f8575edbd1f714b7cd3124d0234
into.icon
対象$ a\in C を固定して
任意の$ z について左指数対象$ ^az が存在するとき i.e.
out-of.icon
随伴系の自然同型、転置、反転置
$ {^a}\Lambda \colon \hom_C(a\otimes \_,\_) \Rightarrow \hom_C(\_,a⊸\_)
$ \colon C^\mathrm{op}× C \to \mathbf{Set}
$ {}^\cap\_ \coloneqq (x,y).\Lambda'^a
$ \colon \hom_C(a\otimes x,y) → \hom_C(x,{}^ay)
$ {}_{\cup}\_ \coloneqq (x,y).(\Lambda'^a )^{-1} =({}^{\cap}\_)^{-1}
$ \colon \hom_C(x,{}^ay) → \hom_C(a\otimes x,y)
p-dual.icon