函手圏
summary.icon
definition.icon 函手圏$ D^C or $ [C,D] $ \operatorname{Obj}(D^C) = \left\{ \left\lang F \right\rang\mid F\colon C\to D \right\}
$ \operatorname{Hom}_{D^C} \left( \left\lang F \right\rang,\left\lang G \right\rang \right) =\left\{ \left\lang \alpha \right\rang \mid \alpha \colon F \Rightarrow G \right\}
$ \left\lang F \right\rang ^\wedge = \left\lang F^\wedge \right\rang
$ \left\lang \alpha \right\rang ; \left\lang \beta \right\rang = \left\lang \alpha ; \beta \right\rang
etc.icon
therefore.icon
$ C が小さい圏でないならば$ D^C は局所的にも小さくない