開核公理系→Hausdorffの公理系
(I6)$ \mathcal N(x)=\{N\in2^X\mid x\in N^\circ\}
(N6)$ A^\circ=\{x\in X\mid A\in\mathcal N(x)\}
を導く
(N1)$ \forall x:
$ x\in X
$ \implies x\in X=X^\circ
$ \implies X\in\mathcal N(x)
$ \because(I6)
$ \underline{\therefore\forall x\in X:X\in\mathcal N(x)\quad}_\blacksquare
(N2)$ \forall x\in X\forall N:
$ N\in\mathcal N(x)
$ \iff x\in N^\circ
$ \because(I6)
$ \subseteq N
$ \implies x\in N
$ \underline{\therefore\forall x\in X\forall N\in\mathcal N(x):x\in N\quad}_\blacksquare
(N3)$ \forall x\in X\forall N_1,N_2:
$ N_1,N_2\in\mathcal N(x)
$ \iff x\in {N_1}^\circ\cap{N_2}^\circ
$ \because(I6)
$ =(N_1\cap N_2)^\circ
$ \implies N_1\cap N_2\in\mathcal N(x)
$ \because(I6)
$ \underline{\therefore\forall x\in X\forall N_1,N_2\in\mathcal N(x):N_1\cap N_2\in\mathcal N(x)\quad}_\blacksquare
(N4)$ \forall x\in X\forall N:
$ 2^N\cap\mathcal N(x)\neq\varnothing
$ \iff\exist N'\in2^N:N'\in\mathcal N(x)
$ \iff \exist N':x\in {N'}^\circ\land N'\subseteq N
$ \because(I6)
$ \implies\exist N':x\in {N'}^\circ\subseteq{N}^\circ
$ \implies x\in{N}^\circ
$ \iff N\in\mathcal N(x)
$ \because(I6)
$ \underline{\therefore\forall x\in X\forall N:(2^N\cap\mathcal N(x)\neq\varnothing\implies N\in\mathcal N(x))\quad}_\blacksquare
これは$ \forall x\in X\forall N_2\in\mathcal N(x):\{N_1\in2^X|N_2\subseteq N_1\}\subseteq\mathcal N(x)とも表せる
(N5)$ \forall x\in X\forall N_1:
$ N_1\in\mathcal N(x)
$ \iff x\in {N_1}^\circ
$ \because(I6)
$ \iff x\in {{N_1}^\circ}^\circ\land{N_1}^\circ\subseteq{N_1}^\circ
$ \implies\exist N_2\in2^X: x\in{N_2}^\circ\land N_2\subseteq{N_1}^\circ
$ \because N_2={N_1}^\circとした
$ \iff\exist N_2\in\mathcal N(x):N_2\subseteq{N_1}^\circ
$ \because(I6)
$ \iff\exist N_2\in\mathcal N(x)\forall y\in N_2:N_1\in\mathcal N(y)
$ \because(I6)
$ \underline{\therefore\forall x\in X\forall N_1\in\mathcal N(x)\exist N_2\in\mathcal N(x)\forall y\in N_2:N_1\in\mathcal N(y)\quad}_\blacksquare
(N6)
$ \forall A\in2^X\forall x:
$ x\in A^\circ
$ \iff A\in\mathcal N(x)
$ \because(I6)
$ \iff A\in\mathcal N(x)\land x\in A^\circ\subseteq A\subseteq X
$ \iff A\in\mathcal N(x)\land x\in X
$ \iff x\in\{x\in X\mid A\in\mathcal N(x)\}
$ \underline{\therefore\forall A\in 2^X:A^\circ=\{x\in X\mid A\in\mathcal N(x)\}\quad}_\blacksquare