積分因子を1変数函数と仮定したときの導出
2変数微分方程式には必ず積分因子が存在するが、具体的な形を一般的に求めるのは難しい
ただし、積分因子が1変数函数になるなら、1階線型斉次微分方程式に持ち込めるので簡単に解ける
導出
$ \exist\phi:\mathrm d\phi=\lambda(x)a_x(x,y)\mathrm dx+\lambda(x)a_y(x,y)\mathrm dy
$ \iff\frac{\partial\lambda(x)a_x(x,y)}{\partial y}=\frac{\partial\lambda(x)a_y(x,y)}{\partial x}
$ \because完全微分が存在する必要十分条件
$ \iff\lambda(x)\frac{\partial a_x(x,y)}{\partial y}=\frac{\partial\lambda(x)}{\partial x}a_y(x,y)+\lambda(x)\frac{\partial a_y(x,y)}{\partial x}
$ \iff a_y(x,y)\lambda '(x)=\left(\frac{\partial a_x(x,y)}{\partial y}-\frac{\partial a_y(x,y)}{\partial x}\right)\lambda(x)
$ \underline{\iff\lambda(x)=\exp\left(\frac1{a_y(x,y)}\frac{\partial a_x(x,y)}{\partial y}-\frac1{a_y(x,y)}\frac{\partial a_y(x,y)}{\partial x}\right)\quad}_\blacksquare
#2025-07-24 10:58:23