全近傍系は基本近傍系
証明
$ \forall x\in X\forall N:
$ N\in\mathcal N(x)
$ \iff N\in\mathcal N(x)\land N\subseteq N
$ \implies\exist N^*\in\mathcal N(x):N^*\subseteq N
$ \implies\forall x\in X\forall N\in\mathcal N(x)\exist N^*\in\mathcal N(x):N^*\subseteq N
$ \underline{\forall x\in X:\mathcal N(x)\in\mathscr N^*(x)\quad}_\blacksquare