超限帰納法
数学的帰納法を整列集合に拡張したもの
Transfinite induction
任意の整列集合$ (X,\le)と1変数述語$ Pについて、
$ (\forall\alpha\in X:(\forall \beta\in X_{<\alpha}:P(\beta))\implies P(\alpha))\implies\forall\alpha\in X:P(\alpha)
証明
狭義の背理法を使う
$ \forall\alpha\in X:(\forall \beta\in X_{<\alpha}:P(\beta))\implies P(\alpha)
$ \implies (
$ \{x\in X|\lnot P(x)\}\neq\varnothing
$ \implies\exist m\in\{x\in X|\lnot P(x)\}\forall x\in\{x\in X|\lnot P(x)\}:m\le x
$ \because整列集合の定義
$ \implies\exist m\in X:\lnot P(m)\land((\forall \beta\in X_{<m}:P(\beta))\implies P(m))\land\forall x\in\{x\in X|\lnot P(x)\}:m\le x
$ \alpha=mを代入
$ \implies\exist m\in X:(\exist\beta\in X_{< m}:\lnot P(\beta))\land\forall x\in\{x\in X|\lnot P(x)\}:m\le x
$ \implies\exist m\in X\exist\beta\in X_{< m}:\lnot P(\beta)\land m\le\beta
$ \implies\bot
$ )
$ \implies\{x\in X|\lnot P(x)\}=\varnothing
$ \underline{\therefore\iff\forall x\in X:P(x)\quad}_\blacksquare
これを応用して、写像$ f:A\to Xの帰納的定義を構成できる
$ A\in 2^X\setminus\{\varnothing\}として、
$ f(\min A)=\varnothing
$ \forall x\in A\forall y\in A_{<x}:f(y)\in f(x)
References
https://ja.wikipedia.org/wiki/超限帰納法
「集合・写像・数の体系 数学リテラシーとして」の草稿 第13章 整列集合
#2025-07-20 17:08:40