¬P∨P⇒((P⇒Q)∨(Q⇒P))
https://scrapbox.io/files/65f2a7c118332300253204de.svg
code:proof.tikz(tex)
\usepackage{fitch}
\usepackage{amsmath}
\begin{document}
$\Large\begin{nd}
\hypo {h} {\lnot P\lor P}
\open
\hypo {np} {\lnot P}
\open
\hypo {np-p} {P}
\have {np-b} {\bot} \ne{np,{np-p}}
\have {np-q} {Q} \be{{np-b}}
\close
\have {pq} {P\implies Q} \ii{{np-p}-{np-q}}
\have {d1} {(P\implies Q)\lor(Q\implies P)} \oi{pq}
\close
\open
\hypo {p} {P}
\open
\hypo {p-q} {Q}
\have {p-p} {P} \r{p}
\close
\have {qp} {Q\implies P} \ii{{p-q}-{p-p}}
\have {d2} {(P\implies Q)\lor(Q\implies P)} \oi{qp}
\close
\have {d} {(P\implies Q)\lor(Q\implies P)} \oe{h,np-d1,p-d2}
\end{nd}$
\end{document}