2階tensorから任意方向成分を取り出す
記号の準備
$ \bm\sigma:Cauchy応力tensor
基底を正規直交基底$ \sf Eで固定し成分表示する
表面力vector$ \bm\sigma\cdot\bm nの$ \bm n方向成分を$ \sigma、それに直交する成分の2乗を$ \tau^2とする
任意次元で計算すると
$ \sigma=(\bm\sigma\cdot\bm n)\cdot\bm n
$ = \bm\sigma:\bm n\bm n
$ \tau^2=|\bm\sigma\cdot\bm n-(\bm\sigma:\bm n\bm n)\bm n|^2
$ = |(\bm\sigma\cdot\bm n)\cdot(\bm I-\bm n\bm n)|^2
$ =\bm n\cdot\bm\sigma\cdot(\bm I-\bm n\bm n)^2\cdot\bm\sigma\cdot\bm n
$ =\bm n\cdot\bm\sigma\cdot(\bm I-2\bm n\bm n+\bm n\bm n)\cdot\bm\sigma\cdot\bm n
$ =\bm n\cdot\bm\sigma\cdot(\bm I-\bm n\bm n)\cdot\bm\sigma\cdot\bm n
$ =\bm\sigma^2:\bm n\bm n-\sigma^2
以下、特定の次元にて$ \sigma,\tauを成分で表す
$ \sigma= n_0^2\sigma_{00}+2n_0n_1\sigma_{01}+n_1^2\sigma_{11}+2n_1n_2\sigma_{12}+n_2^2\sigma_{22}+2n_2n_0\sigma_{20}
$ \tau^2=n_0^2(\sigma_{00}^2+\sigma_{01}^2+\sigma_{02}^2)+2n_0n_1(\sigma_{00}\sigma_{01}+\sigma_{01}\sigma_{11}+\sigma_{02}\sigma_{21})
$ +n_1^2(\sigma_{11}^2+\sigma_{12}^2+\sigma_{10}^2)+2n_1n_2(\sigma_{10}\sigma_{02}+\sigma_{11}\sigma_{12}+\sigma_{12}\sigma_{22})
$ +n_2^2(\sigma_{22}^2+\sigma_{20}^2+\sigma_{21}^2)+2n_2n_0(\sigma_{20}\sigma_{00}+\sigma_{21}\sigma_{10}+\sigma_{22}\sigma_{20})
$ -\sigma^2
$ \sf Eを$ \bm\sigmaの主軸に合わせて簡略化する
$ \sigma=n_0^2\sigma_{00}+n_1^2\sigma_{11}+n_2^2\sigma_{22}
$ \tau^2=n_0^2\sigma_{00}^2+n_1^2\sigma_{11}^2+n_2^2\sigma_{22}^2-\sigma^2
$ =-2{n_0}^2{n_1}^2\sigma_{00}\sigma_{11}-2{n_1}^2{n_2}^2\sigma_{11}\sigma_{22}-2{n_2}^2{n_0}^2\sigma_{22}\sigma_{00}-{n_0}^4\sigma_{00}^2-{n_1}^4\sigma_{11}^2-{n_2}^4\sigma_{22}^2
$ +n_0^2\sigma_{00}^2+n_1^2\sigma_{11}^2+n_2^2\sigma_{22}^2
$ ={n_0}^2{n_1}^2(\sigma_{00}-\sigma_{11})^2+{n_1}^2{n_2}^2(\sigma_{11}-\sigma_{22})^2+{n_2}^2{n_0}^2(\sigma_{22}-\sigma_{00})^2
$ -{n_0}^2({n_1}^2+{n_2}^2)\sigma_{00}^2-{n_1}^2({n_2}^2+{n_0}^2)\sigma_{11}^2-{n_2}^2({n_0}^2+{n_1}^2)\sigma_{22}^2
$ -{n_0}^4\sigma_{00}^2-{n_1}^4\sigma_{11}^2-{n_2}^4\sigma_{22}^2
$ +n_0^2\sigma_{00}^2+n_1^2\sigma_{11}^2+n_2^2\sigma_{22}^2
$ ={n_0}^2{n_1}^2(\sigma_{00}-\sigma_{11})^2+{n_1}^2{n_2}^2(\sigma_{11}-\sigma_{22})^2+{n_2}^2{n_0}^2(\sigma_{22}-\sigma_{00})^2
$ -n_0^2\sigma_{00}^2-n_1^2\sigma_{11}^2-n_2^2\sigma_{22}^2
$ +n_0^2\sigma_{00}^2+n_1^2\sigma_{11}^2+n_2^2\sigma_{22}^2
$ ={n_0}^2{n_1}^2(\sigma_{00}-\sigma_{11})^2+{n_1}^2{n_2}^2(\sigma_{11}-\sigma_{22})^2+{n_2}^2{n_0}^2(\sigma_{22}-\sigma_{00})^2
$ \bm n=\frac1{\sqrt3}\begin{pmatrix}1\\1\\1\end{pmatrix}(正八面体の法線vector)のとき $ \sigma=\frac13(\sigma_{00}+\sigma_{11}+\sigma_{22})=\sigma_{oct}=p
$ \tau^2=\frac19((\sigma_{00}-\sigma_{11})^2+(\sigma_{11}-\sigma_{22})^2+(\sigma_{22}-\sigma_{00})^2)={\tau_{oct}}^2
$ \sigma= {n_0}^2\sigma_{00}+2n_0n_1\sigma_{01}+{n_1}^2\sigma_{11}
$ \tau^2={n_0}^2(\sigma_{00}^2+\sigma_{01}^2)+2n_0n_1(\sigma_{00}\sigma_{01}+\sigma_{01}\sigma_{11})+{n_1}^2(\sigma_{01}^2+\sigma_{11}^2) -\sigma^2
$ \sf Eを$ \bm\sigmaの主軸に合わせて簡略化する
$ \sigma=n_0^2\sigma_{00}+n_1^2\sigma_{11}
$ \tau^2=n_0^2\sigma_{00}^2+n_1^2\sigma_{11}^2-\sigma^2
$ = n_0^2\sigma_{00}^2+n_1^2\sigma_{11}^2-n_0^4\sigma_{00}^2-n_1^4\sigma_{11}^2-2n_0^2n_1^2\sigma_{00}\sigma_{11}
$ = n_0^2(n_0^2+n_1^2)\sigma_{00}^2+n_1^2(n_0^2+n_1^2)\sigma_{11}^2-n_0^4\sigma_{00}^2-n_1^4\sigma_{11}^2-2n_0^2n_1^2\sigma_{00}\sigma_{11}
$ = {n_0}^2{n_1}^2(\sigma_{00}-\sigma_{11})^2
$ \bm n=\frac1{\sqrt2}\begin{pmatrix}1\\1\end{pmatrix}($ x=yに並行な単位vector)のとき
$ \sigma=\frac12(\sigma_{00}+\sigma_{11})=p
$ p:平均応力
$ \tau^2=\left(\frac12(\sigma_{00}-\sigma_{11})\right)^2=q^2
$ q:=\frac12(\sigma_{00}-\sigma_{11}:2次元偏差応力 Reference