冪集合函手
$ X,Y \in \mathbf{Set} ,$ F\colon X→Y
$ \mathrm{Pow}_\circ\colon \mathbf{Set}→\mathbf{Set}
$ X.\mathrm{Pow}_\circ = 2^X
$ 2^X = \left\{ X' \mid X' \subseteq X \right\}
$ F_\triangleright \coloneqq F.\mathrm{Pow}_\circ \colon 2^X→2^Y
$ X'.F_\triangleright = \left\{ x'.F \in Y \mid x' \in X' \right\}
$ =\left\{ y \in Y \mid \exist x' \in X,\ y = x'.F \right\}
where
$ X,Y \colon \mathbf{Set}
$ F\colon X→Y
$ X' \colon 2^X
i.e. $ X'\subseteq X
$ \mathrm{Pow}_\circ\colon \mathbf{Set}→\mathbf{B.Lattice}
$ \mathrm{Pow}^\circ\colon \mathbf{Set}^{\mathrm{op}}→\mathbf{Set}
$ X.\mathrm{Pow}^\circ = 2^X
$ F^\triangleleft \coloneqq F.\mathrm{Pow}^\circ \colon 2^Y→2^X
$ Y'.F^\triangleleft = \left\{ x \in X \mid \ x.F \in Y' \right\}
$ = \left\{ x \in X \mid \ \exists y' \in Y', y' = x.F \right\}
where
$ X,Y \colon \mathbf{Set}
$ F\colon X→Y
$ Y' \colon 2^Y
$ \mathrm{Pow}^\circ\colon \mathbf{Set}^{\mathrm{op}}→\mathbf{B.Lattice}