運動方程式
圧力傾度力から、両辺を$ \rho Vで割って、成分を鉛直方向x, yと、鉛直方向zに分ける。 $ \frac{du}{dt}=-\frac{1}{\rho}\frac{\partial p}{\partial x},\qquad \frac{dv}{dt}=-\frac{1}{\rho}\frac{\partial p}{\partial y}, \qquad \frac{dw}{dt}=-\frac{1}{\rho}\frac{\partial p}{\partial z}
$ \frac{du}{dt}-fv=-\frac{1}{\rho}\frac{\partial p}{\partial x},\qquad \frac{dv}{dt}+fu=-\frac{1}{\rho}\frac{\partial p}{\partial y}, \qquad \frac{dw}{dt}=-\frac{1}{\rho}\frac{\partial p}{\partial z}-g
これが、基本の運動方程式
$ \frac{d}{dt}=\frac{\partial}{\partial t}+u\frac{\partial}{\partial x}+v\frac{\partial}{\partial y}+w\frac{\partial}{\partial z} \quad (=\frac{\partial}{\partial t}+(\mathbf u \cdot \nabla))
である。
運動方程式(粘性・渦粘性あり)
$ \frac{du}{dt}-fv=-\frac{1}{\rho}\frac{\partial p}{\partial x}+\nu\nabla^2 u,\qquad \frac{dv}{dt}+fu=-\frac{1}{\rho}\frac{\partial p}{\partial y}+\nu\nabla^2 v, \qquad \frac{dw}{dt}=-\frac{1}{\rho}\frac{\partial p}{\partial z}-g+\nu\nabla^2 w
※粘性を含む流体の運動方程式を、このように呼ぶ
$ \frac{du}{dt}-fv=-\frac{1}{\rho}\frac{\partial p}{\partial x}+A_H \left( \frac{\partial^2u}{\partial x^2}+\frac{\partial^2v}{\partial y^2} \right)+A_V \left( \frac{\partial^2w}{\partial z^2}\right)
$ \frac{dv}{dt}+fu=-\frac{1}{\rho}\frac{\partial p}{\partial y}+A_H \left( \frac{\partial^2u}{\partial x^2}+\frac{\partial^2v}{\partial y^2} \right)+A_V \left( \frac{\partial^2w}{\partial z^2}\right)
$ \frac{dw}{dt}=-\frac{1}{\rho}\frac{\partial p}{\partial z}-g+A_H \left( \frac{\partial^2u}{\partial x^2}+\frac{\partial^2v}{\partial y^2} \right)+A_V \left( \frac{\partial^2w}{\partial z^2}\right)