積分発火モデル
Integrate-and-fire models (IF models)
入力の時間積分によって細胞の膜電位が増加し,ある閾値を超えるとスパイクが生成されるという現象を再現したニューロンのモデル
Hodgkin-Huxley Modelのような,生物的なニューロンモデルとは挙動が異なる?
解析的に解ける
入力が確率的な場合も可
Leaky Integrate-and-Fire model (LIF model)
$ \tau_L \frac{\mathrm{d}V(t)}{\mathrm{d}t} = E_L - V(t) + \frac{I(t)}{g_L}
閾値を超えたら発火:$ V(t) = V_0 \quad \mathrm{if} \ V(t) \geq V_{th}
発火後すぐにリセット:$ V(t)=V_{re}
初期値$ V(0)=V_{re}として$ V(t) = E_0 + (V_{re}-E_0)e^{-t/\tau_L}
where$ E_0 = E + I/g_L
スパイク周期($ V(T)=V_{th})$ T = \tau_L \log \frac{E_0-V_{re}}{E_0-V_{th}}
パラメータ例
$ E_L = -65
$ \tau_L = 10
$ V_{th} = -55
$ I/g_L = 12
定数とせず$ I(t)もモデル化することも.
Exponential IF model (EIF model)
Non-Leaky IF model (NLIF model)
http://suzuzusu.hatenablog.com/entry/2018/03/25/134946
https://warwick.ac.uk/fac/sci/systemsbiology/staff/richardson/teaching/ma4g4/ITN_LN6.pdf #TODO