chain rule of Jacobian
$ \bm{J}_{\bm{g}∘\bm{f}}(a) = \bm{J}_{\bm{g}}(\bm{f}(a)) \bm{J}_{\bm{f}}(a)
where
f: ℝ^n→ℝ^m
g: ℝ^m → ℝ^l
あとで太字にする。
Proof
$ \text{LHS} = \left( \frac{∂(g∘f)_i}{∂x_j}(a) \right)_{i\,j}
$ = \left( \sum_{k∈1..m} \frac{∂g_i}{∂y_k}(f(a)) \cdot \frac{∂f_k}{∂x_j}(a) \right)_{i\,j}
$ = \left( \frac{∂g_i}{∂y_j}(f(a)) \right)_{i\,k} \left( \frac{∂f_i}{∂x_j}(a) \right)_{k\,j}
$ = \text{RHS}
感想 wint.icon
ref.