ミュンヒハウゼンのトリレンマ
そもそも、語彙が有限であり、全ての語彙を定義するためには既に定義されている語彙を用いるか、一切定義されていない語彙を用いる必要が有るため、循環定義を完全に無くすことは不可能である 第一印象は「そんなことないやろ」だった
単純な例で考える
語彙集合はW1、W2、W3の三つだけとする
この1,2,3について定義をすればいいんだよな
W1=W2+W3とする
W2の定義は?
ないのでW4を追加しよう
W3は?
……と考えていくと、無限に増えていく
どこかでカットしなきゃいけない
---
W1=W2+W3
W2=W4
W3=(ここでこれ以上語彙増やさずに定義するには?)
既存の1,2,4を使うしかない
W3=W1とした場合
W3=W2+W3となり、循環!
W3=W2とした場合
W3=W4となり、
あ、W4の定義も考えないとsta.icon
W3=W4とした場合
W4の定義も考えないとsta.icon
---
W4=(語彙増やしたくないので、これも既存から使う)
W4=W1の場合
W4=W2+W3
W4=W2の場合
W4=W3の場合
……
と考えてみて、たしかにどっかで矛盾が出ますねぇと直感的にわかったsta.icon
こういうのをどっかの偉い人が、数学的に証明するんだろうな
その他の思いつき
鳩の巣原理が思い浮かんだりした(関係あるかわからんけど) グラフ理論使ってもなんか証明できそうな気がしないでもない nodeとedgeの世界になる
W1とはW2+W3である、という定義を、(w1, w2) (w1, w3)みたいな感じで表現する感じで
うんぬん
根源にたどり着かない点で、無限後退と構造が共通するtakker.icon ナマの事実って面白い響きmtane0412.icon