合成積のFourier変換
$ {\cal F}(x*y)(\omega)={\cal F}(x)(\omega){\cal F}(y)(\omega)
証明
$ {\cal F}(x*y)(\omega)=\int_{(t,\tau)\in\R^2}x(\tau)y(t-\tau)e^{-i\omega t}\mathrm d\tau\mathrm dt
$ =\int_{(\tau,t-\tau)\in\R^2}x(\tau)y(t-\tau)e^{-i\omega((t-\tau)+\tau)}\mathrm d\tau\mathrm d(t-\tau)
$ =\int_{(\tau,t)\in\R^2}x(\tau)y(t)e^{-i\omega(t+\tau)}\mathrm d\tau\mathrm d t
$ t-\tau\to tに置換積分しただけ
$ =\int_{(\tau,t)\in\R^2}x(\tau)e^{-i\omega\tau}y(t)e^{-i\omega t}\mathrm d\tau\mathrm d t
$ = \int_\R x(\tau)e^{-i\omega\tau}\mathrm d\tau\int_\R y(t)e^{-i\omega t}\mathrm dt
$ ={\cal F}(x)(\omega){\cal F}(y)(\omega)