¬¬((P⇒Q)∨(Q⇒P))
証明
https://scrapbox.io/files/68af8b8976fb6820ac28fcad.svg
code:proof.tikz(tex)
\usepackage{fitch}
\usepackage{amsmath}
\begin{document}
$\Large\begin{nd}
\open
\hypo {ndummett} {\lnot((P\implies Q)\lor(Q\implies P))}
\open
\hypo {q} {Q}
\open
\hypo {p} {P}
\have {q2} {Q} \r{q}
\close
\have {pq} {P\implies Q} \ii{p-q2}
\have {pqqp} {(P\implies Q)\lor(Q\implies P)} \oi{pq}
\have {b} {\bot} \ie{ndummett,pqqp}
\have {p} {P} \be{b}
\close
\have {qp} {Q\implies P} \ii{q-p}
\have {pqqp} {(P\implies Q)\lor(Q\implies P)} \oi{qp}
\have {b} {\bot} \ie{ndummett,pqqp}
\close
\have {nndummett} {\lnot\lnot((P\implies Q)\lor(Q\implies P))} \ii{ndummett-b}
\end{nd}$
\end{document}
#2025-08-28 07:49:17 tikz書き起こし
#2021-11-29 16:48:35