Legendre変換
https://www.f-denshi.com/000TokiwaJPN/10kaisk/080ksk.html
https://eman-physics.net/analytic/legendre.html
https://manabitimes.jp/math/1179
https://zenn.dev/kaityo256/articles/legendre_dual
https://kakeru.app/967c75e00ee3145e32567f1ec5b0f8fa https://i.kakeru.app/967c75e00ee3145e32567f1ec5b0f8fa.svg
$ (x,y)\mapsto\phi
$ \mathrm d\phi=\frac{\partial\phi}{\partial x}\mathrm dx+\frac{\partial\phi}{\partial y}\mathrm dy
$ (u,v)\xmapsto{f_x}x
$ (u,v)\xmapsto{f_y}y
$ \left.\frac{\partial\phi}{\partial x}\right|_{(x,y)=(f_x(u,v)),f_y(u,v))}=u
$ \left.\frac{\partial\phi}{\partial y}\right|_{(x,y)=(f_x(u,v)),f_y(u,v))}=v
$ \mathrm d\phi(f_x(u,v)),f_y(u,v))=u\mathrm df_x+v\mathrm df_y
$ \tilde\phi:(u,v)\mapsto f_xu+f_yv-\phi(f_x,f_y)+C\quad\text{.for }\exist C\in\R
$ \mathrm d\tilde\phi=f_x\mathrm du+f_y\mathrm dv
$ \bar\phi:(x,y)\mapsto x\frac{\partial\phi}{\partial x}+y\frac{\partial\phi}{\partial y}-\phi+C
$ \mathrm d\bar\phi=x\mathrm d\frac{\partial\phi}{\partial x}+y\mathrm d\frac{\partial\phi}{\partial y}
ルジャンドル変換
#2023-11-27 18:25:11
#2023-06-24 21:40:49
#2022-10-28 11:26:36