Hagen-Poiseuille流れ
そのうち確認しよう
導出
円筒座標系の基底を$ \{\pmb{e}_x,\pmb{e}_r,\pmb{e}_\theta\}とする
条件は以下の通り
定常流れ
$ \frac{\partial \pmb{v}}{\partial t}=\pmb{0}
x軸方向に一様な流れ
$ \frac{\partial \pmb{v}}{\partial x}=\pmb{0}
x軸方向のみに流れが存在する
$ \pmb{v}=v_x\pmb{e}_x
幾何学的対称条件
$ \frac{\partial \pmb{v}}{\partial\theta}=\pmb{0}
外力なし
$ \pmb{f}=\pmb{0}
壁面の滑りなし条件
$ \left.\pmb{v}\right|_{r=a}=\pmb{0}
圧縮性Newton流れにおける運動方程式に、以上の条件を代入する
$ \underbrace{\cancel{\frac{\partial \pmb{v}}{\partial t}}}_{\frac{\partial \pmb{v}}{\partial t}=\pmb{0}}+(\pmb{v}\cdot\pmb{\nabla})\pmb{v}=\underbrace{\cancel{\frac{\pmb{f}}\rho}}_{\pmb{f}=\pmb{0}}-\frac1\rho\pmb{\nabla}P+\nu\pmb{\nabla}^2\pmb{v}+\left(\frac\lambda\rho+\nu\right)\pmb{\nabla}(\pmb{\nabla}\cdot\pmb{v})
$ \implies v_x\underbrace{\cancel{\frac{\partial v_x}{\partial x}}}_{\frac{\partial \pmb{v}}{\partial x}=\pmb{0}}\pmb{e}_x=-\frac1\rho\pmb{\nabla}P+\nu\pmb{\nabla}^2v_x\pmb{e}_x+\left(\frac\lambda\rho+\nu\right)\pmb{\nabla}\underbrace{\cancel{\frac{\partial v_x}{\partial x}}}_{\frac{\partial \pmb{v}}{\partial x}=\pmb{0}}
$ \implies\pmb{0}=-\frac1\rho\pmb{\nabla}P+\nu\pmb{\nabla}^2v_x\pmb{e}_x
$ = -\frac1\rho\pmb{\nabla}P+\nu\pmb{\nabla}\cdot\left(\frac{\partial v_x}{\partial r}\pmb{e}_r+\underbrace{\cancel{\frac1r\frac{\partial v_x}{\partial\theta}\pmb{e}_\theta}}_{\frac{\partial \pmb{v}}{\partial\theta}=\pmb{0}}\right)\pmb{e}_x
$ = -\frac1\rho\pmb{\nabla}P+\nu\pmb{\nabla}\cdot\left(\frac{\partial v_x}{\partial r}\pmb{e}_r\right)\pmb{e}_x
$ = -\frac1\rho\pmb{\nabla}P+\nu\left(\frac{\partial^2 v_x}{{\partial r}^2}+\frac1r\frac{\partial v_x}{\partial r}\right)\pmb{e}_x
ここの発散の計算は、以下の結果を用いた
$ \pmb{\nabla}\cdot(a_r\pmb{e}_r+a_\theta\pmb{e}_\theta)=\pmb{e}_r\cdot\frac{\partial(a_r\pmb{e}_r+a_\theta\pmb{e}_\theta)}{\partial r}+\pmb{e}_\theta\cdot\frac{\partial(a_r\pmb{e}_r+a_\theta\pmb{e}_\theta)}{r\partial\theta}
$ =\frac{\partial a_r}{\partial r}+\pmb{e}_r\cdot\frac{\partial(a_\theta\pmb{e}_\theta)}{\partial r}+\frac{a_r}{r}+\pmb{e}_\theta\cdot\frac{\partial(a_\theta\pmb{e}_\theta)}{r\partial\theta}
基底を偏微分した
$ =\frac{\partial a_r}{\partial r}+0+\frac{a_r}{r}+\frac1r\frac{\partial a_\theta}{\partial\theta}+0
$ =\frac{\partial a_r}{\partial r}+\frac{a_r}{r}+\frac1r\frac{\partial a_\theta}{\partial\theta}
$ \implies \pmb{\nabla}P=\mu\left(\frac{\partial^2 v_x}{{\partial r}^2}+\frac1r\frac{\partial v_x}{\partial r}\right)\pmb{e}_x
$ \iff \frac{\partial P}{\partial x}=\mu\left(\frac{\partial^2 v_x}{{\partial r}^2}+\frac1r\frac{\partial v_x}{\partial r}\right)\land\frac{\partial P}{\partial r}=\frac{\partial P}{\partial\theta}=0
$ \iff \frac{\partial P}{\partial x}=\frac{\mu}r\frac{\partial}{\partial r}\left(r\frac{\partial v_x}{\partial r}\right)\land\frac{\partial P}{\partial r}=\frac{\partial P}{\partial\theta}=0
ここで、$ \ddot{f}+\frac1r\dot{f}=\frac1r(r\ddot{f}+\dot{r}\dot{f})=\frac1r\frac{\mathrm{d}}{\mathrm{d}r}(r\dot{f})を使った
$ \iff \frac1\mu\frac{\partial P}{\partial x}r=\frac{\partial}{\partial r}\left(r\frac{\partial v_x}{\partial r}\right)\land\frac{\partial P}{\partial r}=\frac{\partial P}{\partial\theta}=0
$ \iff \frac1{2\mu}\frac{\partial P}{\partial x}r^2+C=r\frac{\partial v_x}{\partial r}\land\frac{\partial P}{\partial r}=\frac{\partial P}{\partial\theta}=0\quad\text{.for}\exists C\in\R
$ \because Pは$ rについて定数として振る舞う
$ \iff \frac1{2\mu}\frac{\partial P}{\partial x}r^2+C=r\frac{\partial v_x}{\partial r}\land0+C=0\land\frac{\partial P}{\partial r}=\frac{\partial P}{\partial\theta}=0\quad\text{.for}\exists C\in\R
$ r=0を代入した
$ \iff \frac1{2\mu}\frac{\partial P}{\partial x}r^2=r\frac{\partial v_x}{\partial r}\land\frac{\partial P}{\partial r}=\frac{\partial P}{\partial\theta}=0
$ \iff v_x=\frac1{4\mu}\frac{\partial P}{\partial x}r^2+C\land\frac{\partial P}{\partial r}=\frac{\partial P}{\partial\theta}=0\quad\text{.for}\exists C\in\R
$ \underline{\iff v_x=\frac1{4\mu}\frac{\partial P}{\partial x}(r^2-a^2)\land\frac{\partial P}{\partial r}=\frac{\partial P}{\partial\theta}=0\quad}_\blacksquare
$ \because\left.\pmb{v}\right|_{r=a}=\pmb{0}