F(f)(ω)*=F(f*)(-ω)
$ \mathcal F(f)(\omega)^*=\frac1{\sqrt{2\pi}}\int_\R f^*(t)e^{i\omega t}\mathrm dt
$ =\frac1{\sqrt{2\pi}}\int_\R f^*(t)e^{-i(-\omega)t}\mathrm dt
$ = \mathcal F(f^*)(-\omega)
$ \therefore\mathcal F(f)(\omega)^*=\mathcal F(f^*)(-\omega)
なお、$ \mathcal F^{-1}(F)(t)^*=\mathcal F^{-1}(F^*)(-t)も成立する
$ \because\mathcal F^{-1}(F)(t)^*=\mathcal F(F)(-t)^*
$ = \mathcal F(F^*)(t)
$ = \mathcal F^{-1}(F^*)(-t)