世界の年平均気温偏差
pandasを用いてネット上に公開されているcsvファイルを読み込む例。
世界の年平均気温偏差(℃)- 気象庁
code:p.py
import pandas as pd
dataset = pd.read_csv('https://www.data.jma.go.jp/cpdinfo/temp/list/csv/an_wld.csv', encoding='shift_jis')
code:an_wld.csv
年,世界全体,北半球,南半球
1891,-0.78,-0.88,-0.68
1892,-0.89,-1.00,-0.74
1893,-0.94,-1.06,-0.79
1894,-0.86,-0.93,-0.77
1895,-0.82,-0.95,-0.67
1896,-0.61,-0.69,-0.52
1897,-0.62,-0.69,-0.55
1898,-0.79,-0.82,-0.76
1899,-0.70,-0.74,-0.67
1900,-0.62,-0.66,-0.58
1901,-0.70,-0.72,-0.68
1902,-0.83,-0.93,-0.73
1903,-0.89,-0.94,-0.85
1904,-0.94,-1.01,-0.86
1905,-0.82,-0.89,-0.74
1906,-0.74,-0.77,-0.69
1907,-0.91,-1.01,-0.79
1908,-0.94,-1.00,-0.88
1909,-0.94,-0.99,-0.87
1910,-0.92,-0.96,-0.87
1911,-0.93,-0.95,-0.92
1912,-0.86,-1.00,-0.68
1913,-0.83,-0.94,-0.69
1914,-0.66,-0.72,-0.57
1915,-0.61,-0.67,-0.50
1916,-0.85,-0.90,-0.76
1917,-0.91,-0.97,-0.79
1918,-0.78,-0.83,-0.67
1919,-0.73,-0.82,-0.55
1920,-0.69,-0.74,-0.61
1921,-0.62,-0.61,-0.62
1922,-0.71,-0.75,-0.67
1923,-0.70,-0.73,-0.66
1924,-0.71,-0.72,-0.70
1925,-0.63,-0.62,-0.62
1926,-0.51,-0.52,-0.51
1927,-0.62,-0.61,-0.63
1928,-0.65,-0.67,-0.62
1929,-0.75,-0.81,-0.66
1930,-0.56,-0.55,-0.57
1931,-0.49,-0.49,-0.50
1932,-0.56,-0.55,-0.57
1933,-0.66,-0.71,-0.60
1934,-0.55,-0.56,-0.54
1935,-0.59,-0.61,-0.57
1936,-0.53,-0.53,-0.53
1937,-0.44,-0.45,-0.44
1938,-0.44,-0.43,-0.45
1939,-0.52,-0.53,-0.52
1940,-0.55,-0.62,-0.38
1941,-0.45,-0.54,-0.28
1942,-0.48,-0.55,-0.36
1943,-0.49,-0.50,-0.47
1944,-0.36,-0.39,-0.29
1945,-0.49,-0.57,-0.33
1946,-0.58,-0.61,-0.53
1947,-0.58,-0.65,-0.48
1948,-0.51,-0.54,-0.47
1949,-0.51,-0.55,-0.45
1950,-0.63,-0.71,-0.53
1951,-0.50,-0.51,-0.47
1952,-0.48,-0.55,-0.39
1953,-0.41,-0.41,-0.40
1954,-0.64,-0.67,-0.61
1955,-0.67,-0.68,-0.67
1956,-0.76,-0.85,-0.64
1957,-0.49,-0.59,-0.36
1958,-0.44,-0.50,-0.36
1959,-0.50,-0.54,-0.44
1960,-0.57,-0.60,-0.52
1961,-0.49,-0.54,-0.42
1962,-0.49,-0.52,-0.47
1963,-0.45,-0.45,-0.43
1964,-0.70,-0.75,-0.63
1965,-0.63,-0.74,-0.50
1966,-0.55,-0.58,-0.52
1967,-0.55,-0.55,-0.56
1968,-0.60,-0.65,-0.53
1969,-0.48,-0.65,-0.27
1970,-0.53,-0.64,-0.40
1971,-0.66,-0.77,-0.54
1972,-0.54,-0.77,-0.26
1973,-0.41,-0.55,-0.26
1974,-0.68,-0.82,-0.51
1975,-0.63,-0.70,-0.53
1976,-0.74,-0.89,-0.55
1977,-0.45,-0.56,-0.31
1978,-0.52,-0.63,-0.38
1979,-0.39,-0.56,-0.19
1980,-0.38,-0.53,-0.21
1981,-0.34,-0.36,-0.31
1982,-0.47,-0.61,-0.31
1983,-0.31,-0.44,-0.16
1984,-0.51,-0.67,-0.31
1985,-0.51,-0.72,-0.28
1986,-0.42,-0.57,-0.25
1987,-0.27,-0.46,-0.06
1988,-0.28,-0.37,-0.17
1989,-0.35,-0.43,-0.26
1990,-0.19,-0.22,-0.17
1991,-0.24,-0.30,-0.16
1992,-0.39,-0.52,-0.23
1993,-0.35,-0.48,-0.20
1994,-0.27,-0.31,-0.22
1995,-0.15,-0.14,-0.17
1996,-0.28,-0.40,-0.15
1997,-0.09,-0.14,-0.02
1998,+0.06,+0.02,+0.11
1999,-0.17,-0.18,-0.15
2000,-0.19,-0.20,-0.17
2001,-0.05,-0.07,-0.04
2002,0.00,-0.04,+0.03
2003,+0.01,+0.01,+0.01
2004,-0.05,-0.05,-0.05
2005,+0.06,+0.09,+0.02
2006,+0.02,+0.05,0.00
2007,0.00,+0.06,-0.06
2008,-0.08,-0.07,-0.08
2009,+0.03,-0.02,+0.08
2010,+0.11,+0.14,+0.07
2011,-0.05,-0.06,-0.04
2012,+0.01,0.00,+0.03
2013,+0.07,+0.06,+0.08
2014,+0.13,+0.15,+0.10
2015,+0.30,+0.38,+0.20
2016,+0.35,+0.43,+0.26
2017,+0.26,+0.34,+0.17
2018,+0.16,+0.19,+0.13
2019,+0.31,+0.38,+0.23
2020,+0.34,+0.51,+0.16
2021,+0.22,+0.35,+0.09
2022,+0.24,+0.35,+0.11
2023,+0.54,+0.68,+0.38
2024,+0.62,+0.79,+0.42
系列「年」をインデックスとし、更にdatetime型とする。
code:p.py
dataset = pd.read_csv(
'https://www.data.jma.go.jp/cpdinfo/temp/list/csv/an_wld.csv',
encoding='shift_jis',
index_col='年',
parse_dates='年',
)
'''
世界全体 北半球 南半球
年
1891-01-01 -0.78 -0.88 -0.68
1892-01-01 -0.89 -1.00 -0.74
1893-01-01 -0.94 -1.06 -0.79
1894-01-01 -0.86 -0.93 -0.77
1895-01-01 -0.82 -0.95 -0.67
... ... ... ...
2020-01-01 0.34 0.51 0.16
2021-01-01 0.22 0.35 0.09
2022-01-01 0.24 0.35 0.11
2023-01-01 0.54 0.68 0.38
2024-01-01 0.62 0.79 0.42
'''