T=2πlgT = 2\pi \sqrt{\frac{l}{g}}
TTllgg


T=2πlgn=0[(2n1)!!(2n)!!]2sin2nθ02T = 2\pi \sqrt{\frac{l}{g}} \sum^\infty_{n=0} \left\lbrack \frac{(2n - 1)!!}{(2n)!!} \right\rbrack^2 \sin^{2n} \frac{\theta_0}{2}
θ0\theta_0
!!!!
nnnnnn
n!!=k=0n/21(n2k)=n(n2)(n4)n!! = \prod_{k=0}^{\lceil n/2 \rceil - 1} (n - 2k) = n(n-2)(n-4)\cdots
?
4lg0π2dϕ1sin2θ02sin2ϕ4 \sqrt{\frac{l}{g}} \int^{\frac{\pi}{2}}_{0} \frac{d \phi}{\sqrt{1 - \sin^2{\frac{\theta_0}{2}}\sin^2\phi}}

(90)20%