正規分布
$ f(x)=\dfrac{1}{\sqrt{2\pi\sigma}}\exp\left(-\dfrac{(x-\mu)^ 2}{2\sigma^ 2}\right)
として表される確率分布のこと.
平均$ \mu,標準偏差$ \sigmaだけで決定するので
$ \mathcal{N}(\mu, \sigma^2)
と書いたりもする
$ \mu=0, \sigma^2=1の正規分布は標準正規分布と呼ばれる.
https://gyazo.com/fd95ecce955d79f5124580659884e643
おそらく統計学で最も重要な確率分布
自然界の様々な現象で発生する誤差の規則性から導かれる
特徴
平均値で最大になり平均から離れるほど小さくなっていくようなデータを表す確率分布
左右対称のグラフになる
平均$ \muと標準偏差$ \sigmaで決定し,$ N(\mu, \sigma)と表す $ \mu=0, \sigma^2=1のとき標準正規分布と呼ばれる 一言で言うなら自然に発生してしまう誤差の確率分布という感じか
参考