Large Vocabulary Automatic Chord Estimation with an Even Chance Training Scheme
#survey #ISMIR #2017
ShuKumata.icon
Author: Jun-qi Deng, Yu-Kwong Kwok
Research institute: University of Hong Kong
The problem the authors try to solve:
Link to This Paper: https://www.semanticscholar.org/paper/Large-Vocabulary-Automatic-Chord-Estimation-with-an-Deng-Kwok/f77f5f1b41bfc1923435ac008e11aeae7e745b59
1枚まとめ
0. とりあえず一言
アブスト
This paper presents a large vocabulary automatic chord estimation system implemented using a bidirectional long short-term memory recurrent neural network trained with a skewed-class-aware scheme. This scheme gives the uncommon chord types much more exposure during the training process. The evaluation results indicate that: compared with a normal training scheme, the proposed scheme can boost the weighted chord symbol recalls of some uncommon chords and significantly improve the average chord quality accuracy, at the expense of the overall weighted chord symbol recall.
本論文は、
Bidirectional LSTMをベースに、学習時に珍しいchordに多くさらすことで、非常に多クラスのchord recognitionを行なった論文?
1. どんなもの? 問題意識は?
2. 先行研究と比べてどこがすごい?
3. 技術や手法のキモはどこ?
4. どうやって有効だと検証した?
5. 議論はある?
6. 次に読むべき論文は?
7. メモ
リンク