numpy
NumPy is the fundamental package for scientific computing with Python. It contains among other things:
* a powerful N-dimensional array object
* sophisticated (broadcasting) functions
* tools for integrating C/C++ and Fortran code
* useful linear algebra, Fourier transform, and random number capabilities
Besides its obvious scientific uses, NumPy can also be used as an efficient multi-dimensional container of generic data. Arbitrary data-types can be defined. This allows NumPy to seamlessly and speedily integrate with a wide variety of databases.
https://www.numpy.org/
Cool points of numpy
Numpy can handle arrays with missing or invalid entries
numpy masked array
Various ways of indexig
numpy indexing
Official documents
Routines grouped by functionality
https://docs.scipy.org/doc/numpy/reference/routines.html
NumPy for Matlab users
https://docs.scipy.org/doc/numpy/user/numpy-for-matlab-users.html
NumPy Reference
https://docs.scipy.org/doc/numpy/reference/
dtype
Data types
https://docs.scipy.org/doc/numpy/user/basics.types.html
Data type objects (dtype)
https://docs.scipy.org/doc/numpy/reference/arrays.dtypes.html
numpy.dtype
https://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html
[numpy.einsum https://numpy.org/doc/stable/reference/generated/numpy.einsum.html
evaluates the Einstein summation convention on the operands.]
Turorial
NumPy Cheat Sheet: Data Analysis in Python (article) - DataCamp
https://www.datacamp.com/community/blog/python-numpy-cheat-sheet
Numpy FAQ | Xdev
https://ncar.github.io/xdev/posts/numpy-faq/
NumPy をマルチスレッドで計算させる - sgryjp.log
Subpages
numpy io
numpy indexing
numpy masked array
numpy.fromfunction
numpy datetime and timedelta