三角関数
倍角の公式の導出メモ
$ sin(2a) = sin(a)cos(a)+cos(a)sin(a) = 2sin(a)cos(a)
$ cos(2a) = cos(a)cos(a)-sin(a)sin(a) = cos^2(a)-sin^2(a) = cos^2(a) - (1 - cos^2(a)) = 2cos^2(a) -1
$ cos(2a) = cos^2(a)-sin^2(a) = (1 - sin^2(a))-sin^2(a) = 1 - 2sin^2(a)
t=tanx/2の置換
$ t = tan\frac{x}{2}
倍角の公式と半角の公式を使う。
$ sinx = \frac{2t}{1+t^2}
$ cosx = \frac{1-t^2}{1+t^2}
$ dx = \frac{2}{1+t^2} dt
半角(2乗)の公式
$ cos(2a)より求まる。
$ cos^2(a) = \frac{1+cos(2a)}{2}
$ sin^2(a) = \frac{1-cos(2a)}{2}
2乗の微分
$ (sin^2x)' = sin2x
$ (cos^2x)' = -2sinxcosx
$ (tan2x)' = \frac{2sinx}{cos^3x}
分数
$ \int \frac{1}{sinx} = \log|tan\frac{x}{2}| + C
逆関数
$ (sin^{-1}x)' = \frac{1}{\sqrt{1-x^2}}
$ (cos^{-1}x)' = - \frac{1}{\sqrt{1-x^2}}
$ (tan^{-1}x)' = \frac{1}{1+x^2}