np.arrayが遅い
まとめ
np.array はリストに比べて2倍ほど要素アクセスが遅い
numpyの添え字アクセスは遅い
累積和を計算するコードを作りnumbaでコンパイルするとnp.arrayを使った側が速くなった
速くなりすぎ感があるので今度もう少しちゃんと調べたい
numbaを調べてた時に書いたのでnumbaの話ばかりだが、Numpyを使う上ではまずループをNumpyに任せることを優先した方が良い
numbaに渡すためにRBSTの今までリストで作ってたところをnp.arrayに置き換えたらやたら遅くなった
code:python
# 6.080607408sec
self.vals = np.repeat(SUM_UNITY, MAX_NODE_ID)
self.sizes = np.ones(MAX_NODE_ID, dtype=np.int)
self.sums = np.repeat(SUM_UNITY, MAX_NODE_ID)
self.lefts = np.zeros(MAX_NODE_ID, dtype=np.int)
self.rights = np.zeros(MAX_NODE_ID, dtype=np.int)
# 2.765020115
# self.vals = SUM_UNITY * MAX_NODE_ID
# self.sizes = 1 * MAX_NODE_ID
# self.sums = SUM_UNITY * MAX_NODE_ID
# self.lefts = 0 * MAX_NODE_ID
# self.rights = 0 * MAX_NODE_ID
調べてみると添え字アクセスが2倍ちょい遅い: list 57.4 ms / np.array 134 ms
code::
In 34: %%timeit
...: N = 1000_000; xs = 0 * N
...: for i in range(N):
...: xsi = xsi
...:
...:
...:
57.4 ms ± 454 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
In 35: %%timeit
...: N = 1000_000; xs = np.zeros(N)
...: for i in range(N):
...: xsi = xsi
...:
...:
...:
134 ms ± 1.55 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
これは本題でないグローバルアクセスが遅い現象: global 155 ms / local 135 ms
code::
In 37: def foo():
...: for i in range(N):
...: xsi = xsi
In 40: %timeit foo()
155 ms ± 2.05 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
In 44: def foo(xs):
...: for i in range(N):
...: xsi = xsi
...:
...:
In 45: %timeit foo(xs)
135 ms ± 2.84 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
numbaコンパイルすれば速くなるが、これは速くなりすぎ(np.array: 255 ns)なので最適化でループごと消えてそう
list: 1.69 s、かえって遅くなる。
この使い方はNumbaPendingDeprecationWarning:
Encountered the use of a type that is scheduled for deprecation: type 'reflected list' found for argument 'xs' of function 'foo'. For more information visit http://numba.pydata.org/numba-doc/latest/reference/deprecation.html#deprecation-of-reflection-for-list-and-set-types
code::
In 46: foo = numba.njit(foo)
In 47: %timeit foo(xs)
255 ns ± 2.11 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
n 58: numba.void(numba.typeof(0))
Out58: (reflected list(int64),) -> none
In 59: def foo(xs):
...: for i in range(N):
...: xsi = xsi
...:
...:
In 60: foo = numba.njit(numba.void(numba.typeof(0)))(foo)
...NumbaPendingDeprecationWarning:
Encountered the use of a type that is scheduled for deprecation: type 'reflected list' found for argument 'xs' of function 'foo'.
For more information visit http://numba.pydata.org/numba-doc/latest/reference/deprecation.html#deprecation-of-reflection-for-list-and-set-types
...
In 63: %timeit foo(xs)
1.69 s ± 12 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
最適化で消えないようにしてコンパイルした
np.arrayの方が3000倍ほど速くなった: list: 1.69 s / np.array 549 µs
本当か?
code::
In 85: xs = np.zeros(N, np.int32)
...: @numba.njit(numba.i4(numba.i4:))
...: def foo(xs):
...: for i in range(1, N):
...: xsi += xsi - 1
...: return xsN - 1
...:
...:
In 86: %timeit foo(xs)
549 µs ± 10.6 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
In 87: xs = 0 * N
...: @numba.njit(numba.i4(numba.typeof(0)))
...: def foo(xs):
...: for i in range(1, N):
...: xsi += xsi - 1
...: return xsN - 1
In 88: %timeit foo(xs)
1.69 s ± 11.4 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
code::
In 89: xs = 0 * N
...: def foo(xs):
...: for i in range(1, N):
...: xsi += xsi - 1
...: return xsN - 1
...:
...:
In 90: %timeit foo(xs)
116 ms ± 2.27 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
In 91: xs = np.zeros(N, np.int32)
...: def foo(xs):
...: for i in range(1, N):
...: xsi += xsi - 1
...: return xsN - 1
...:
...:
In 92: %timeit foo(xs)
280 ms ± 5.67 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)