7762aa93ff14112
http://nhiro.org.s3.amazonaws.com/8/0/80477c9087b5a7b4a0515324bf429917.jpg https://gyazo.com/80477c9087b5a7b4a0515324bf429917
(OCR text)
113
Gaussian Process UCB
GPはsklearnに実装が
ある
fitしてpredictすると平均と分散が返ってくるので
あらかじめ計算しておいた定数βを掛けてargmax
Theorem 1 Let
2log(D|t2n2/66).
a sample f of a GP with mean function zero and
covariance function k(x, x'), we obtain a regret bound Algorit hm 1 The GP-UCB algorithm.
of O(TYT log|D|) with high probability. Precisely,
(0, 1) and Bt
Running GP-UCB with B for
=
Input: Input space D; GP Prior Ho
for t 1,2,. do
Choose targmax t-1(x)+ Vrot-1(x)
= 0, oo
k
Pr{Rr s VCTBr VT21}21-&.
ED
Sample yf(X,) + €
Perform Bayesian update to obtain
end for
and ot
where Ci 8/log(1 + o2).
learn.org/stable/modules/generated/sklearn.gaussian process.GaussianProcess.html