7762aa93ff14064
http://nhiro.org.s3.amazonaws.com/0/0/00dae007114c718d510ed6fcc72b747f.jpg https://gyazo.com/00dae007114c718d510ed6fcc72b747f
(OCR text)
1層目のモデル:xgboost
65
-Model 14: Xgboost(R). Trainned one against all. Dataset:
(X, feature sum(zeros) by row ). Replaced zeros with NA.
-Model 15: Xgboost(R). Trainned Multiclass Soft-Prob.
Dataset: (X, 7 Kmeans features with different number of
clusters, rowSums(X-0), rowSums(Scale(X)>0.5),
rowSums(Scale(X)< -0.5))
-Model 16: Xgboost(R). Trainned Multiclass Soft-Prob.
Dataset: (X, T-sne features, Some Kmeans clusters of X)
-Model 17: Xgboost(R): Trainned Multiclass Soft-Prob.
Dataset: (X, T-sne features, Some Kmeans clusters of
log (1+X))
-Model 18: Xgboost(R): Trainned Multiclass Soft-Prob.
Dataset: (X, T-sne features, Some Kmeans clusters of
Scale(X))
xgboostはGBDTの実装の一つ
http:://github.com/dmlc/xgboost
LO