sklearn.metrics.multilabel_confusion_matrix
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.multilabel_confusion_matrix.html
Compute class-wise (default) or sample-wise (samplewise=True) multilabel confusion matrix
MCM
In multilabel confusion matrix , the count of true negatives is MCM[:, 0, 0], false negatives is MCM[:, 1, 0], true positives is MCM[:, 1, 1] and false positives is MCM[:, 0, 1].
添字の意味合いはsklearn.metrics.confusion_matrixと共通(i, j)
confusion_matrix: array([[TN, FP], [FN, TP]]])
0, 0 -> TN (ただしnp.ndarray。ほかも同じ)
0, 1 -> FP
1, 0 -> FN
1, 1 -> TN
例(TODO)
Multilabel-indicator case:
Multiclass case:
👉Multi-label confusion matrix