Retrieval-Augmented Generation for Large Language Models: A Survey
https://arxiv.org/abs/2312.10997
https://github.com/tongji-kgllm/rag-survey
https://openrag.notion.site/Open-RAG-c41b2a4dcdea4527a7c1cd998e763595
Fig 1: 系統樹
https://github.com/Tongji-KGLLM/RAG-Survey/blob/main/images/Survey/Tech_tree.png?raw=true
Fig 2: RAGの例、サム・アルトマン解任
A representative instance of the RAG process applied to question answering
https://github.com/Tongji-KGLLM/RAG-Survey/blob/main/images/Survey/RAG_case.png?raw=true
Fig 3: 類型化
https://github.com/Tongji-KGLLM/RAG-Survey/blob/main/images/Survey/RAG_Compare.png?raw=true
Fig 4:
Fine-tuneの領域になかなか立ち入らずに、プロンプトエンジニアリング -> RAG
naive -> advanced -> modular (-> +fine-tuning)
https://github.com/Tongji-KGLLM/RAG-Survey/blob/main/images/Survey/RAG_FT_eng.png?raw=true
Fig 5: 検索過程 3種
https://github.com/Tongji-KGLLM/RAG-Survey/blob/main/images/Survey/RAG_process.png?raw=true
Table 1
https://github.com/Tongji-KGLLM/RAG-Survey/blob/main/images/Survey/method_sumamry.png?raw=true