A practical guide to building agents (OpenAI)
https://cdn.openai.com/business-guides-and-resources/a-practical-guide-to-building-agents.pdf
Agents are systems that independently accomplish tasks on your behalf. (Introduction p.4)
Conclusion (p.32)
To build reliable agents, start with strong foundations: pair capable models with well-defined tools and clear, structured instructions.
Use orchestration patterns that match your complexity level, starting with a single agent and evolving to multi-agent systems only when needed.
Start small, validate with real users, and grow capabilities over time.
#Agents_(OpenAI)
When should you build an agent?
Complex decision-making:
Difficult-to-maintain rules:
Heavy reliance on unstructured data:
Agent design foundations
3つのcore components
Model
Tools
Instructions
Best practices for agent instructions
Use existing documents
Prompt agents to break down tasks
Define clear actions
Capture edge cases
You can use advanced models, like o1 or o3-mini, to automatically generate instructions from existing documents.
code:txt
You are an expert in writing instructions for an LLM agent. Convert the
following help center document into a clear set of instructions, written in
a numbered list. The document will be a policy followed by an LLM. Ensure
that there is no ambiguity, and that the instructions are written as
directions for an agent. The help center document to convert is the
following {{help_center_doc}}
Orchestration
single agent / multi agents
triage_agent (p.22-23)
Guardrails
LangGraphやADKのようなマルチエージェントフレームワークでは状態遷移を一定厳密に制御できる機能が準備されてるので、Agent間遷移もしっかり入れて堅い方式を取りがちなのだけれど、初期からそれをやると危険がある。遷移の多さは事前の設計と事後評価の工数を増大させるので、業務の複雑度が増すほど工数増大による破綻が懸念される。
それでも無理になったところから分離するという方針を採ったほうが良いという提言ですな。