Laplacian
Laplace operator
$ \Delta f:=(\nabla\cdot\nabla)f=\sum_{i=1}^n\frac{\partial^2 f}{\partial x_i^2}
橢圓型作用素 (elliptic operator)
Laplacian 行列 (Laplacian matrix。admittance 行列。Kirchhoff 行列。離散 Laplacian)
$ L_{ij}:=D-A=\begin{cases} {\rm deg}(v_i) & {\rm if}~i=j \\ -1 & {\rm if}~i\ne j~{\rm and}~v_i~{\rm is~adjacent~to}~v_j \\ 0 & {\rm otherwise} \end{cases}
$ L=D-A
$ L=BB^\top
次數行列 (degree matrix)$ D
隣接行列 (adjacency matrix)$ A
$ A_{ij}:=\begin{cases} {\rm deg}(v_i) & {\rm if}~i=j \\ 0 & {\rm otherwise} \end{cases}
接續行列 (incidence matrix)$ B