存在量化子∃
$ \exist
なんちゃらが、少なくとも1つは存在する
$ \exist xPx⊨⫤$ \lnot\forall x\lnot Px
$ \lnot\exist xPx⊨⫤$ \forall x\lnot Px
$ \exist!は「唯一つ存在する」を意味する
例えば ref 『論理学をつくる』.icon pp.116-117
$ \forall x. Gxを
全ての人間は善人であるとすると、
$ \forall x.\lnot Gxは、
全ての人間は悪人である
$ \lnot\forall x.Gxは、
「全ての人間は善人である」わけではない
→悪人が少なくとも一人は存在する
$ \lnot\forall x.\lnot Gxは、
「全ての人間は悪人である」わけではない
→善人が少なくとも一人は存在する
=$ \exist x. Gx