教師なし学習
クラスタリングは、最も一般的な教師なし学習手法です。これは、探索的データ分析により、データ内の隠れたパターンやグループ構造を発見するために用いるものです。 クラスタリングは、遺伝子配列解析、市場調査、および物体認識などに活用されています。
たとえば、携帯電話会社が携帯電話の中継塔の位置を最適化したい場合、中継塔の利用者のクラスター数を見積もるために機械学習を使うことができます。携帯電話が一度に接続する中継局は1カ所のみのためクラスタリングアルゴリズムを使用して、顧客のグループまたはクラスターが最適化された信号受信を受けるために最適な中継塔の配置を設計します。
https://gyazo.com/a05296ca8640add808957161fa9e742b
出典:MathWorks 機械学習、https://jp.mathworks.com/discovery/machine-learning.html 、2020/1/30
#テーマ5