教師あり学習
教師あり学習とは機械学習の手法の一つで、ある例題を提示しそれをガイドに学習を進めさせる。 教師あり学習では与えられたデータを学習できても実際には使いものにならないことがあります。たとえば、人間がテスト勉強(ここでは数学を例にする)をするとき、教科書にある問題しか解くことができなくても、その場ではきちんとわかったつもりになれます。ところがテスト本番で、教科書にある問題より少し数字が変わった程度の問題に上手く対応できずにあまり点数がとれなかった、なんて話はよくありますよね。ここでの勉強は、「将来やってくるであろう問題」を解くためにやらなければならないので、逆に言えば教科書にある問題がまったくできなくても、テスト本番で問題が解ければ問題ないといえます。実際には、例題も解けないのに試験で上手く出来るとは思えないので両者は別物ではないのですが、教師あり学習でも同じことがいえます。
教師あり学習では、人間が用意した学習データはちゃんと認識できてるのに、いざ実際に使おうと思うと未知のデータにまったく対応できていない、ということが非常によくあります(過学習, overfitting)。これをクリアして、予め用意しておいたデータもちゃんと正解できるし、新たな未知のデータもきちんと正解できる学習器のことを「汎化能力が高い」といいます。教師あり学習の歴史は結局のところ、いかに過学習せずに汎化能力を高めるかという歴史にほかなりません。