ロジスティック回帰
ロジスティック回帰とは発生確率を予測して確率から起こるか否かを分類するものである.
ロジスティック回帰(ロジスティックかいき、英: Logistic regression)は、ベルヌーイ分布に従う変数の統計的回帰モデルの一種である。連結関数としてロジットを使用する一般化線形モデル (GLM) の一種でもある。1958年にデイヴィッド・コックス(英語版)が発表した。確率の回帰であり、統計学の分類に主に使われる。医学や社会科学でもよく使われる。
モデルは同じく1958年に発表された単純パーセプトロンと等価であるが、scikit-learnなどでは、パラメータを決める最適化問題で確率的勾配降下法を使用する物をパーセプトロンと呼び、座標降下法や準ニュートン法などを使用する物をロジスティック回帰と呼んでいる。(2)
-----------------------------------------------------------------------------------------------------------------------------------------
参考文献