s-Peano-axioms
Formalize Peano postulates in epista AST
let 0: N { for all x { 0 != S(x) } }
let 0: N, S: N => N, for all x, φ { 0 != S(x) & S(x) = S(y) -> x = y & (φ(0) & φ(x) -> φ(S(x))) -> for all x φ(x)) }
equality
|- x = x
|- x = y & y = x
|- x = y & y = z -> x = z
definitions
let 0: N
let S: N => N
properties of successor and zero
|- S(x) = S(y) -> x = y
|- 0 != S(x)
let φ any predicate, φ(0); φ(x) -> φ(S(x)) |- φ(x)
note: 帰納法をこういう風に表せないか?
for all x { exists S^n { S^n(0) = x } }