https://gist.githubusercontent.com/anonymous/8292d2518ac613789b6edc860bf05eb4/raw/18ea8eefede2e428be98f1c5f44f31c7e7d55962/Untitled57.ipynb
# (最初)
$ f(x) = \frac{1}{x^2+1} を描きましょう
code:source.jl
# In1
xs= -2:0.05:2
ys=1 ./ (xs.^2+1);
code:source.jl
# In2
using PyPlot
plot(xs,ys)
code:output.txt
image/png
https://i.gyazo.com/bee752fd7fee1e4d85623c61da784877.png
code:output.txt
PyPlot.Figure(PyObject <matplotlib.figure.Figure object at 0x3192ed410>)
code:output.txt
1-element Array{Any,1}:
PyObject <matplotlib.lines.Line2D object at 0x321739790>
# (次)
原点をずらしてみます
$ f(x) = \frac{1}{(x-x_0)^2+1}
code:source.jl
# In3
x0=-0.2
ys=1 ./ ((xs-x0).^2+1);
plot(xs,ys)
code:output.txt
image/png
https://i.gyazo.com/34f9c53412748b7999327d01f35234d2.png
code:output.txt
PyPlot.Figure(PyObject <matplotlib.figure.Figure object at 0x32179cc90>)
code:output.txt
1-element Array{Any,1}:
PyObject <matplotlib.lines.Line2D object at 0x3218b9e90>
# (その次)
幅を変えてみる。
$ f(x) = \frac{\gamma}{(x-x_0)^2+(\gamma)^2}
code:source.jl
# In4
x0=-0.2
gamma=3
ys=gamma ./ ((xs-x0).^2+gamma^2);
plot(xs,ys)
code:output.txt
image/png
https://i.gyazo.com/46ff6d424202a3b723358242bce2a1b8.png
code:output.txt
PyPlot.Figure(PyObject <matplotlib.figure.Figure object at 0x321917750>)
code:output.txt
1-element Array{Any,1}:
PyObject <matplotlib.lines.Line2D object at 0x321a98250>
code:source.jl
# In[]