Free energy profile analysis of aggregation-induced emission (AIE) for a cyanostilbene derivative

CN-MBE

Norifumi Yamamoto | Chiba Institute of Technology, Japan

Aggregation Caused Quenching

conventional luminogen

Aggregation Induced Emission

AIE luminogen

Tang, et al, J. Phys. Chem. Lett., 6, pp 3429–3436 (2015)

ACO

Aggregation Caused Quenching

Aggregation Induced Emission

conventional luminogen

AIE luminogen

Tang, et al, J. Phys. Chem. Lett., 6, pp 3429–3436 (2015)

CN-MBE

 H_3C H_3C H_3C H_3C H_3C H_3C H_3C H_3C H_3 H_3C H_3 H_3C H_3 H_3C H_3 H_3C H_3 H_3C H_3C H_3 H_3C H_3C

- **CN-MBE** shows **AIE**:
 - → When dispersed in THF solution, it is non-emissive.
 - → When water is added, it becomes emissive by forming aggregates.

An, B-. K., et al, J. Am. Chem. Soc., 124, 14410–14415 (2002)

CN-MBE has two isomers

E-form

Aggregation induces emission. Aggregation doesn't induce emission. Chung, et al, J. Phys. Chem. C, 117, 11285–11291 (2013)

How does fluorescence quench?

- → Conical intersection (CI) can play an important role.
 - e.g., ethylene
 - \rightarrow After photo-excitation, along the relaxation pathway on S₁,

the C=C bond twisting occurs to reach the CI between S₀/S₁.

 \rightarrow At the CI, it returns to S₀ without fluorescence (FL). \rightarrow FL quenches.

Relaxation pathway of CN-MBE after photo-excitation

- For monomer,
 - \rightarrow (1) conical intersections (CIs) of CN-MBE were investigated,
 - \rightarrow (2) minimum energy paths (MEPs) that lead to CIs were determined,
- In aggregates, along the MEPs (determined for the monomer)
 - \rightarrow (3) **MD simulations** were performed,
 - \rightarrow (4) free-energy profiles (FEPs) were analyzed.

Computational methods for CN-MBE monomer

- Electronic Structure Calculations
 - → Method: Spin-flip TD-DFT [Krylov 2001, Shao 2003]
 - Even at CIs, SF-TD-DFT can treat S₀ & S₁ states on an equal footing.
 - → Functional: BHHLYP
 - → Basis Set: 6-31G(d)
 - → Program: Q-Chem 5.1

- Minimum Energy Conical Intersection (CI) Search
 - → Method: Direct Method [Bearpark 1994]
 - → Program: Q-Chem 5.1
- Minimum Potential Energy Path (MEP) Search
 - → Method: String Method [E 2002, E 2007]
 - MEPs reaching to the MECI were searched.
 - → Program: an in-house script

string method

MEPs between FC and CI

- Optimized geometries at the S₀ state were determined, which corresponds to the Frank-Condon (FC) geometries at the S₁ state.
- Minimum energy point of S₀/S₁ conical intersections (CIs) was determined.
- Minimum energy paths (MEPs) between FC and CI were determined.

Potential energy changes along the MEPs

- There is **no energy barrier** along the MEPs on the S_1 surface.
- After photo-excitation, it arrives at the CI spontaneously, returns to S₀ without fluorescence emission.
- CN-MBE is non-emissive when isolated. → What happens after aggregation?

AIE of CN-MBE depends on isomeric forms

- E-form becomes emissive after aggregation formation.
- **Z-form**, however, is **non-emissive** even in aggregated state.

E-form

Z-form

Chung, et al, J. Phys. Chem. C, 117, 11285–11291 (2013)

AIE mechanism? \rightarrow Free energy profiles in the aggregated state were analyzed.

Free energy analysis of CN-MBE aggregates

- Free energy changes along the MEPs were analyzed using the QM/MM Free Energy Perturbation [Zhang 2000].
 - One geometry was took from the MEP, and embed into an aggregate as a Quantum Mechanics (QM) part.
 - The other molecules were set as Molecular Mechanics (MM) parts.

QM ACCENT ACCENT

conformations along the MEP

Free energy analysis of CN-MBE aggregates

• Free energy changes along the MEPs were analyzed using the QM/MM Free Energy Perturbation [Zhang 2000].

$$\Delta F = \Delta E_{\rm QM} - k_{\rm B}T \ln \left\langle \exp\left(-\beta \Delta E_{\rm QMMM}^{(A \to B)}\right) \right\rangle_{\rm R_{\rm MM}}$$

$$\Delta E_{\rm QM/MM}^{(A \to B)} = E_{\rm QM/MM} \left(\mathbf{r}_{\rm QM}^{(B)}, \mathbf{R}_{\rm MM}^{(A)} \right) - E_{\rm QM/MM} \left(\mathbf{r}_{\rm QM}^{(A)}, \mathbf{R}_{\rm MM}^{(A)} \right)$$
perturbed
Image: the second second

Free energy analysis of CN-MBE aggregates

- Molecular Dynamics (MD) Simulations were performed
 - → for 60 QM/MM systems separately, where

QM molecules were **fixed** to optimized structures on the MEP, and **MM molecules fluctuated** under given canonical ensembles.

- → Condition: NpT (p = 1 atm; T = 300 K)
- → Length: 2 ns (1,000,000 steps × 2 fs/step)
- → Force Field: GAFF (General Amber FF)
- → **Program:** Amber 18 package

E-form aggregate

- The free-energy profile shows the FC-to-CI "twisting" path is an uphill, where the CI point is 2.3 eV higher than the FC point.
- The twisting is restricted. → The molecule can not reach CIs.
- Excitation energy **does not vanish through Cls**. → **FL emission occurs.**

Z-form aggregate

- The free-energy profile shows the FC-to-CI "twisting" path is a slight uphill, where the CI point is 0.5 eV higher than the FC point.
- The twisting is energetically favorable. → The molecule can reach CIs.
- Excitation energy vanishes via Cls. → FL quenches even in aggregates.

Conclusion

- Free energy profiles along the FC-to-CI pathways successfully captured the AIE mechanism of CN-MBE.
- Our approach used in this study can be applied to various optical materials.

Yamamoto, Phys. Chem. Chem. Phys., Vol. 23, pp. 1317–1324 (2021)