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Abstract

The structure of the differential operator for three sets of relativis-
tic wave equations, namely, the Klein-Gordon equation, the Maxwell
equations, and the Dirac equation has been shown to be essentially
identical using ordinary matrix calculation. In the present paper, the
Klein-Gordon equation and the Maxwell equations have been written
in the form of conventional Dirac equation with complex matrices, and
the Dirac equation has been expressed in the form of Vector Analysis.
It is concluded that what makes difference in the appearance of equa-
tions is not the differential operator, but the nature of the wave fields
to which the operator is applied. The calculations here are based on
the matrix manipulation, which is familiar to most of physicists; one
do not need esoteric knowledge of modern vector theories to under-
stand the result.

1 Introduction

The Klein-Gordon equation, the Maxwell equations, and the Dirac equation
are well-known basic wave equations with manifestly covariant form. The
conventional appearance of these three is, however, considerably different.
One might feel it would comfortable if it is possible to write three of them
in the same form. The Klein-Gordon equation and the Maxwell equations
can be expressed more or less in a similar manner. They are written in
the framework of Vector Analysis with differential operators such as “∇·”
or ”∇×”. Here in this paper, capitalized words “Vector Analysis” refer to
the method developed by Gibbs and Heaviside [1, 2] (the vector analysis we
learn in physics departments in the course of electromagnetism) in particular,
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whereas “vector analysis” in small letters are used to mean mathematical
manipulations to handle vectors in general.

In contrast, the differential operator γµ∂µ in the conventional Dirac equa-
tion looks quite different (γµ is the Dirac’s gamma matrix). However, as we
will see in the present paper, it is essentially identical to the differential op-
erator in the Klein-Gordon or the Maxwell equations. This fact is not new at
all. It has been shown by Hesteness in the middle of the last century [7, 8],
using an algebraic theory that he christened “Spacetime Algebra”. There are
several different words for this kind of algebra: Clifford Algebra, Geometric
Algebra, or Spacetime Algebra. The meaning of each term is slightly differ-
ent, however, we do not pay attention to the difference and use the words
“Spacetime Algebra” throughout the present paper.

There must be a considerable number of physicists who wish to know why
the appearance of basic equations is so different. Therefore, the author of the
present paper wonders why it is not well known that the three can be derived
in the same manner with Spacetime Algebra, which does not require highly
mathematical skill to understand. Perhaps this is partially because we are
somewhat conservative by human nature; we do not want to try new tools
as long as we are satisfied with old ones, even when a new tool is better. We
move on to new tools when we find the cost to learn it is low enough or the
benefit is high enough, but do not try when the cost or benefit is unknown.

It should be emphasized that Spacetime Algebra is a truly powerful math-
ematical tool that can be applied to a wide variety of problems in physics
[3]. However, if one can understand what he/she wish to understand without
paying the cost of introducing the new tool, we can say it would not be a bad
choice to stick to the old tool. Therefore, we try to understand the structure
of the wave equations with an old tool, namely matrix manipulation, in the
present paper.

Using old style matrix manipulation, we show the three sets of wave
equations can be derived from an identical differential operator. This result
means it is not the differential operator but the nature of wave fields that
make the appearance of equations different. Having elucidated the underlying
mechanism of wave equations, we can reexamine the problem in the light of
the new tool, namely, Spacetime Algebra. The argument is quite parallel to
the one based on matrices, therefore, it may help readers to try the new tool,
hopefully.

The n dimensional differential operator we examine here is in the following
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form in general.

D̂ =
n∑
µ

γ̂µ∂µ . (1)

The terms in the above equation are matrices, which is denoted by hat marks
in the present paper; γ̂µ is the Dirac’s gamma matrix extended for spaces
with general dimensions.

What we wish to show is the above differential operator yields wave equa-
tions generally. This operator is often called “Dirac operator”, however, we
call it “D operator” in the present paper. This is because when we say Dirac
operator, it might imply the operator is only for the Dirac equation; actu-
ally, it works on all wave equations examined here. The above expression
for D operator is the expression in spaces with general dimensions, however,
what we are interested in are the cases with n = 3 and n = 4, which will be
scrutinized in the following.

Firstly we delve into the case with n = 3, fields in a three-dimensional
space. We assume the Euclidian space, therefore, fields are static; static
electromagnetic fields are an example. The gamma matrices are reduced
to Pauli’s sigma matrices. The reason why we start with three-dimensional
fields, not full dynamics in the four-dimensional space, is that they are simply
easy to handle. We can, of course, start with the four-dimensional Minkowski
space from the scratch, however, we have to treat 4 × 4 complex matrices,
which is cumbersome and requires considerable effort to understand the un-
derlying physics. Fields in the three-dimensional Euclidian space, in contrast,
can be expressed with 2× 2 matrices, which is much easier, and most of the
important insights can be obtained with them. We can see the matrix repre-
sentation has geometrical implication; the sigma matrices correspond to the
orthogonal unit vectors.

It is almost straightforward to apply the three-dimensional results to the
four-dimensional Minkowski space. We find gamma matrices also have ge-
ometrical meaning as unit vectors. It will be shown the same D operator
can derive the Klein-Gordon equation, the Maxwell equations, and the Dirac
equation. The difference of equations comes not from the operator but from
the nature of wave fields. The Klein-Gordon equation is from the line-like
vectors and the Maxwell equations are from the plane-like vectors. The Dirac
equation is not from the vectors, but from the spinors that represent rota-
tions.

So far, every calculation is done in the matrix base, which is familiar
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to most of the physicists. However, what we have used is not calculations
with actual components of matrices, but their simple algebraic relation only.
Therefore, it is possible to introduce an abstract algebra without paying
attention to what the actual elements are. This is the starting point of
Spacetime Algebra; hopefully, the present paper can help the readers to try
Spacetime Algebra with what we have found here.

2 Three-dimensional Static Field

Suppose the following static equations for a three-dimensional vector field V
with a source term s.

∇ ·V = s , ∇×V = 0 . (2)

Boldface symbols mean three-dimensional vectors in this paper. Here V and
s are just mathematical fields and do not have to have physical meanings,
however, it is easier to understand by the image of electrostatic fields for us
physicists. Thus we denote V = E and s = ρ in the following

What we wish to do in this section is to reproduce the above static equa-
tions using the following Pauli matrices.

σ̂1 =

(
0 1
1 0

)
, σ̂2 =

(
0 −i
i 0

)
, σ̂3 =

(
1 0
0 −1

)
. (3)

Hat marks indicate matrices in this paper. What we only need for these
matrices is to satisfy the following rule.

1

2
(σ̂iσ̂j + σ̂jσ̂i) = 1̂ . (4)

The matrix 1̂ in the right hand side is the unit matrix.
Suppose we combine the matrices, differential operators, and field compo-

nents to make something look like field equations in a ad hoc manner without
paying attention to their meaning. There can be several choices, and most
of them are meaningless. However, if we can find one that gives the result
same as (2), it is something. Actually we do not have to try every possible
combination here because we know the following correct one with hindsight.

Firstly, let us write the D operator as

D̂ = σ̂1∂x + σ̂2∂y + σ̂3∂z . (5)
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The vector field may be written as

Ê = σ̂1Ex + σ̂2Ey + σ̂3Ez . (6)

We can write from (4) the product of two Pauli matrices as

σ̂iσ̂j =

{
1̂ if i = j

−σ̂jσ̂i if i ̸= j
. (7)

Then we have

D̂Ê =1̂(∂xEx + ∂yEy + ∂zEz)

+ σ̂zσ̂y(∂zEy − ∂yEz) + σ̂zσ̂x(∂zEx − ∂xEz) + σ̂xσ̂y(∂xEy − ∂yEx)
(8)

It is known Pauli matrices with different indices are linearly independent
of each other, as well as independent of the unit matrix. Therefore, the above
expression has four independent components: one scalar (unit matrix) and
three terms with σ̂iσ̂j. We can write the field equation as

D̂Ê = ρ , (9)

which means the scalar term, or unit matrix term, (first line of 8) is ρ and the
σ̂iσ̂j terms (second line) are zero. Comparing each component, we understand
that the above equation is identical to (2).

Now that we have successfully obtained the equation of the electrostatic
field with Pauli matrices, we can scrutinize its meaning. Observing (5) and
(6) yield correct answer, we can infer σ̂i represents the unit vector in the xi
direction. This is the meaning of sigma matrices, and we can interpret the
above matrix calculation as geometrical vector equations.

The terms with σ̂iσ̂j (i ̸= j) correspond to rotation in Vector Analysis:
∇ × E. This means E is subject to line integral in the Stokes theorem, in
other words, E is a line-like object, or 1-form in the vocabulary of Cartan’s
Differential Form [5]. Therefore, we can say the vector equations (6) is ob-
tained by applying D operator on a line-like object. The scalar term (i = j)
is, in contrast, subject to surface integration, but this term is actually electric
flux D, and expressed with the Hodge operator as D = ∗E in the theory of
Differential Form; this is is called 3-form.
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Now we move on to another kind of vector field U that is expressed as

∇ ·U = 0 , ∇×U = S . (10)

Again it is better to imagine this field by a field know, and thus we write
U = B and S = J in association with a static magnetic field. The calculation
goes almost the same as the electric field case; one difference is that B is
subject to surface integral, therefore B is a plane-like object; it is called
2-form in the theory of Differential Forms.

B̂ = σ̂2σ̂3Bx + σ̂3σ̂1By + σ̂1σ̂1Bz . (11)

Note that each unit plane is spanned by two unit vectors σ̂iσ̂j, and the
number of planes is three: yz, zx, xy. This is a special situation of a three-
dimensional space since 3C1 = 3C2. Also it is special to have σ̂1σ̂2 = iσ̂3 in
three-dimensional case, and thus the unit plane vector σ̂1σ̂2 should not be
confused with the unit line vector σ̂3. The result is

D̂B̂ = J , (12)

The scalar term means ∇ ·B = 0, and the vector are (terms with σ̂i in this
case) yields ∇ × B = J. This time, the scalar term vanishes to ensure the
existence of the vector potential. Here we see that the vector equations of
(10) are obtained by applying the D operator on a plane-like object B.

Other points are the same as the those for the electric field. Especially,
the D operator is exactly identical to (5), which means it is not the differential
operator that makes the appearance of equations different. It is the operand,
wave fields in other words, makes difference. This point becomes important
in the four-dimensional Minkowski space; this difference causes the difference
of the Klein-Gordon equation and the Maxwell equations.

3 Wave Equations in Minkowski Space

Now we are in the position to apply the tactics in the previous section to
the three sets of basic wave equations, namely, the Klein-Gordon equation,
the Maxwell equations, and the Dirac equation. As in the previous section,
the results here are valid for four-dimensional vectors in general, however,
we assume specific fields of the wave equations for easier understanding.

6



The differential operator and vector fields were represented by 2×2 Pauli
matrices in the three-dimensional space. However, 2×2 is too “small” to use
in four-dimensional spaces, and we need 4× 4 complex matrices. This is not
that four is the number of the spacetime dimensions, but that we need this
size of matrices to accommodate vectors in four-dimensional spaces.

The requirement for these matrices is the following algebraic rule.

1

2
(γ̂µγ̂ν + γ̂ν γ̂µ) = η̂µν , (13)

where η̂µν is

η̂µν =

{
1̂ µ = ν = 0

−1̂ otherwise
. (14)

The definition of the Dirac operator is a straightforward extension of (5);
just adding another dimension term.

D̂ = γ̂t∂t + γ̂x∂x + γ̂y∂y + γ̂z∂z (15)

As in the three-dimensional case, γµ represents the unit vector in the µ
direction.

3.1 Klein-Gordon Equation

Let us suppose the following real Klein-Gordon equation.

(∂2t − ∂2x − ∂2y − ∂2z )ϕ = m2ϕ . (16)

The story goes quite parallel to the case of the three-dimensional fields. We
did not start from the electrostatic potential, but start from the electric field
itself in the previous section. The potential may be derived as a result of the
field equation (9), which contains not only ∇ · E = ρ, but also ∇ × E = 0
that assures the existence of the potential.

Similarly we start with the following vector field V instead of the potential
ϕ.

V = γ̂tVt + γ̂xVx + γ̂yVy + γ̂zVz . (17)

We denote four-dimensional vectors by calligraphic fonts. The above V is a
line-like object, or 1-form, which corresponds to V(= E) in (4).
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Applying D operator on the above field yields

D̂V = 1̂(Vt,t + Vx,x + Vy,y + Vz,z)

+ γ̂tγ̂x(Vt,x − Vx,t) + γ̂tγ̂y(Vt,y − Vy,t) + γ̂tγ̂z(Vt,z − Vz,t) (18)

+ γ̂xγ̂y(Vx,y − Vy,x) + γ̂zγ̂x(Vz,x − Vx,z) + γ̂xγ̂y(Vx,y − Vy,x) .

(19)

When the second and third terms vanishes, there exist a potential ϕ whose
four-dimensional gradient becomes V . The conventional expression of the
Klein-Gordon equation starts with the existence of the potential ϕ; in our
approach here the potential is the result of the field equation in contrast.
With this potential we arrive at the following expression of the Klein-Gordon
equation.

D̂V = m2ϕ . (20)

3.2 Maxwell Equations

The Klein-Gordon equation above was a differential equation for a line-like
object (1-form). The electromagnetic fields in the Maxwell equations is a
four-dimensional plane-like object, or 2-form, which corresponds to U(= B)
in (10). This difference of line-like or plane-like makes the appearance of two
sets of equations considerably different.

Electromagnetic fields are represented by a six component skew tensor
in the covariant relativistic theory. This number (six) is the the maximum
number of mutually orthogonal planes in a four-dimensional space: 4C2 = 6.
The three of the six are the the electric field and the other three are the
magnetic field. We can write the electromagnetic field F as

F = γ̂0γ̂xEx + γ̂0γ̂yEy + γ̂0γ̂zEz + γ̂yγ̂zBx + γ̂zγ̂xBy + γ̂xγ̂yBz (21)

Applying D operator to the above expression is similar to the calculation for
the Klein-Gordon equation. The following are examples of typical terms.

γ̂t∂t(γ̂
tγ̂xEx) = γ̂x∂tEx , γ̂x∂x(γ̂

tγ̂xEx) = γ̂t∂xEx , (22)

γ̂y∂y(γ̂
tγ̂xEx) = γ̂tγ̂x∂yEx ,

(23)
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and

γ̂t∂t(γ̂
yγ̂zBx) = ω̂γ̂x∂xBx , γ̂x∂x(γ̂

yγ̂zBx) = ω̂γ̂t∂xBx ,

γ̂y∂y(γ̂
tγ̂xBx) = ω̂γ̂x∂yBx . (24)

Here we write ω̂ = γ̂tγ̂xγ̂yγ̂z. By arranging the terms we arrive at

D̂F =γ̂t∇ · E+ γ̂i[−∂tE+∇×B]i

+ ω̂γ̂t∇ ·B+ ω̂γ̂i[∂tB+∇× E]i , (25)

where [ ]i denotes the i-th component of the vector inside the square bracket.
We use the notation of Vector Analysis so that we can understand how

the above equation is related to the Maxwell equations. We do not need to
specify the matrix form to obtain the above expression; however, it is easier
to use the representation with the Dirac bases for the actual calculation,
which is briefly sketched in Appendix.

Defining the electric four current J as

J = γ̂tρ+ γ̂xJx + γ̂yJy + γ̂zJz , (26)

the Maxwell equations in the matrix form are expressed as

D̂F = J . (27)

This expression means the first line of (25) is equal to the four current and the
second line vanishes. The fact that second line vanishes assures the existence
of the vector potential.

3.3 Dirac Equation

We have rewritten the Klein-Gordon equation and the Maxwell equations in
the form of matrix representation. What we wish to do lastly is to write
the Dirac equation, which is expressed with matrices usually, in the form of
Vector Analysis. Similar results are obtained by Morgan [13] using Spacetime
Algebra.

Now we have the matrix representation of the Maxwell equations (27),
which are usually written in the form of Vector Analysis. Then we are able to
go inversely from the matrix representation to Vector Analysis representation
for the Dirac equation if the electromagnetic field F in (21) can be replaced
by the Dirac field ψ somehow.
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The problem is that the electromagnetic field matrix in F (21) has only
six parameters, whereas the Dirac field has four complex parameters, eight
real parameters equivalently. We need two more mathematical objects to
accommodate the remaining two. These two must be a scalar and ω̂ terms,
because we do not have other choices.

ψ =α0 + γ̂0γ̂xεx + γ̂0γ̂yεy + γ̂0γ̂zεz

+ γ̂yγ̂zβx + γ̂zγ̂xβy + γ̂xγ̂yβz + ω̂αω (28)

Here we have chosen the symbols for components so as to associate the elec-
tromagnetic fields in Vector Analysis for intuitive understanding, but they
have no direct connection to electromagnetic fields.

To obtain D̂ψ is quite similar to the calculation of (25); difference is the
additional terms coming from the four-dimensional gradient of α0 and αω.
The temporal vector γtmψ in the particle rest frame turns out to give the
correct answer as the mass term, and the Dirac equation in the form of Vector
Analysis becomes

∂tα0 +∇ · ε = −mα0 , ∂tε−∇αω −∇× β = mε

∂tαω +∇ · β = −mαω , ∂tβ −∇α0 +∇× ε = mβ

4 Concluding Remarks

We have derived three sets of basic wave equations, the Klein-Gordon equa-
tion, the Maxwell equations, and the Dirac equation namely, using the same
differential operator: D operator. What the present paper assert is the forms
of basic wave equations look different because the wave fields to handle are
different, not because of the differential operator. This may not be a new
finding, however, the author could not find past literature which clarify this
point explicitly.

Usually textbooks on the quantum theory asserts Dirac found the way
to express the wave equation for fermions with matrices, and this expression
summons the spins. It seems spins are the result of the matrix differential
operator in this explanation. This contradicts what we have seen in the
present paper because the same differential operator can derive the spinless
Klein-Gordon field, as well as the Maxwell equations.

Morgan [13] has derived results similar to ours using Spacetime Alge-
bra. He wrote “The distinction between spin 1

2
and spin1 has become quite
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blurred; because both the Dirac wave function and the Maxwell wave func-
tion satisfy the same differential equation, ...”. He assumes the difference of
the differential equation must cause the difference of wave functions. Our
standpoint is opposite: the wave functions are different by their nature from
the beginning, which makes the appearance of the differential equations dif-
ferent.

The fields in Klein-Gordon equation and the Maxwell equations are vec-
tors; a line-like object for the Klein-Gordon equation and a plane-like object
for the Maxwell equations. The Dirac equation looks quite different from the
two above, but we have seen the same D operator can derive it and the result
can be cast into the Vector Analysis notation. This time the wave field is not
a vector, but a spinor, which is a mathematical object that is different from
vectors. It is closely related to the rotation rather than parallel transition for
vectors. The difference of vectors and spinors is not well scrutinized here in
this paper, and there are many yet to study. However, the difference clearly
exists and it makes the appearances of wave equations different. Here we just
remark the existence difference and dare not delve deeper into the properties
of spinors.

The following table summarizes our result.

Equation Field Matrix Form Vector Analysis Form

Klein-Gordon line-like D̂V = mϕ̂ ∇2ϕ = m2ϕ

the Maxwell plane-like D̂F = J ∂tE+∇×B = J , etc.

Dirac rotation- D̂ψ = γ̂0mψ ∂t(ε+ α0) +∇× β = mε, etc.

So far, we have avoided to use the knowledge of Spacetime Algebra in
the present paper intentionally. What we have used is well known matrix
manipulation so that we can see that the results are obtained without some
advanced and sophisticated mathematical theory. Looking back at our cal-
culations, however, all we have used here is the algebraic rule of (13), and we
did not need the calculations of actual components. This means we can aban-
don the actual matrices and regard operators and vectors as more conceptual
and abstract mathematical objects that only obey the rule of (13).

This is the starting point of the Spacetime Algebra. It starts by defining
algebraic elements with manipulation rules similar to that of matrix calcula-
tion, without paying attention to what actually they are. Then it is possible
construct a rich and versatile algebraic theory, which would be better than
the matrix calculation or other mathematical tools.
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We have used words “line-like” and “plane-like” for the objects repre-
sented by matrices γ̂µ and γ̂µγ̂ν , respectively, which are called 1-form and
2-form in the theory of Differential Forms. They are termed blades with grade
one and grade two in Spacetime Algebra. Those who first study Spacetime
Algebra, including the author of the present paper in the past, may be taken
aback to find there are objects consists of the sum of blades with different
grades.

When we apply D operator on a grade one blade (a line-like vector, or 1-
form), for instance, the result is the sum of grade zero (point-like, 0-form) and
grade two blades (plane-like, or 2-form). This may seem curious because it is
a sum of a scalar and vector in Vector Analysis. However, it is understandable
when we interpret it using matrix representation (18) because the result is
a sum of 4 × 4 matrices (note that the first line is the 4 × 4 unit matrix).
This makes sense even when we forget matrices and move on to abstract
Spacetime Algebra.

The author of the present paper believes Spacetime Algebra is truly pow-
erful and useful tool that more physicist should learn. Hopefully it would be-
come easier to attack it after reading the present paper, since our matrix ap-
proach here is logically the same as the one at the entrance of Spacetime Alge-
bra. We dare not provide tutorial introduction of Spacetime Algebra here be-
cause there are considerable number of good ones today [6, 4, 3, 9, 10, 12, 11].
It is recommended to proceed these tutorials if readers find this paper inter-
esting.

Appendix: Actual Matrix Calculation of Maxwell

Equations

Here in this appendix we explore the actual matrix form for the Maxwell
equations. We essentially do not need matrix components for the algebraic
arguments in the main text, however, a specific matrix manipulation may be
useful to understand the relation to the formulas in Vector Analysis.

Let us start with the following Dirac basis.

γ̂0 =

(
1̂ 0

0 −1̂

)
, γ̂i =

(
0 −σi
σi 0

)
. (29)

The above matrices are of 4 × 4 and “1̂” in γ̂0 is the 2 × 2 unit matrix.
The matrix to represent electromagnetic fields is obtained by substituting
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the above expression to (21) as

F =

(
iB E
E iB

)
, (30)

where

E =

(
Ez Ex − iEy

Ex + iEy −Ez

)
, B =

(
Bz Bx − iBy

Bx + iBy −Bz

)
(31)

Then we can write the matrix form of the Maxwell equations as

D̂F =

(
i∂tB − σ̂i∂iE ∂tE − iσ̂i∂iB
∂tE − iσ̂i∂iB −i∂tB − σ̂i∂iE

)
(32)

The calculation for σ̂i∂iE and σ̂i∂iB is not identical, but quite close to that
in Section 2. We obtain ∇·E, ∇×E, ∇·B, and ∇×B terms as in (8). and
arrive at the vector form of the Maxwell equations.

The representation with Dirac basis is suitable to obtain the vector form
of the Maxwell equations with three vectors E and B in usual style. This is
understandable because the Dirac representation is essentially 3 + 1 split of
the spacetime.

In contrast, the Weyl representation emphasizes the chirality, which is
equivalent to the helicity for electromagnetic fields. When we use the follow-
ing Weyl basis

γ̂0 =

(
0 1̂

1̂ 0

)
, γ̂i =

(
0 σi

−σi 0

)
, (33)

the electromagnetic field becomes

F =

(
0 E + iB

E − iB 0

)
, (34)

and the field equation is separated in two opposite polarization parts as
expected.
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