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Abstract—Artificial Intelligence (AI) is gradually receiving
more attention as a fundamental feature to increase the immer-
sion in digital games. Among the several AI approaches, Player
Modeling is becoming an important one. The main idea is to try
to understand and model the player characteristics and behaviors
in order to develop a better AI. This paper presents a survey of
the field, discussing the main concepts and proposing a taxonomy
to better organize them. We also present several game platforms
that can be used by player modeling and AI researchers. We
believe that compiling this information can be important to the
field, specially to new researchers.

Index Terms—Player Modeling, Taxonomy, Game Platforms.

I. INTRODUCTION

For a long time, the game industry has put much of its
efforts on computer graphics to increase the level of immersion
of its AAA games. But in recent years, we can observe that
some of the focus has started to shift to Artificial Intelligence
(AI), that has been commonly relegated to a less important
role. There are several reasons for this. The first one is
the perception that the immersion achieved with amazing
graphics can be spoiled by the behavior of dummy non-player
characters. Another important point is that the increasing
performance of the new computer architectures has allowed
the use of more sophisticated AI algorithms, tightening the
gap between the game industry and academic AI.

At the same time, AI researchers have been considering
digital games an important platform for research. Fairclough
et. al [10] argue that “computer games offer an accessible
platform upon which serious cognitive research can be en-
gaged”, while Laird and van Lent suggest that computer games
are the perfect platform to pursue research into human level
AI [14]. Moreover, the high level of realism achieved by some
games has provided us an environment similar to the real world
that can be used, for example, to evaluate robotics algorithms
without the costs of real robots and sensors.

At this moment is important to define the scope we refer
using the word games. We are concerned with games as
Nareyek defined: not board/card/puzzle games but the ones
which demand us dealing with “optimization in real time, a
highly dynamic and complex environment, incomplete knowl-
edge” [20]. Game examples are the Civilization, Starcraft,
FIFA and Call of Duty series.

Much of game AI has focused on using classical techniques
such as rule based systems and graph/tree search to solve three
main problems: movement, decision making and high level
strategy. But as the complexity of games increase, an important
research area is gaining attention: Player Modeling. The main

idea is to try to understand and model the player characteristics
and behaviors in order to develop a better AI, making games
more immersive and challenging. We firmly believe that player
modeling is a very promising field and many works has shared
this belief [4], [15], [38]. But in spite of the growing interest
in this area, there has not been an effort to join the fields’
concepts and main techniques and this is essential to organize
the knowledge being produced.

Our objective in this paper is to present a discussion about
several player modeling concepts. We gathered information
from various works in the field and generated a taxonomy that
tries to organize the most important concepts. We also present
some suitable game platforms that can be used to experiment
player modeling techniques and AI algorithms in different
game genres. This is an attempt to facilitate experimental
research in this field. As far as we know there is no work that
has organized a taxonomy of the field nor a list of experimental
platforms and we believe this paper can be very useful to new
researchers in this area.

This paper is organized as follows: next section will address
the basic concepts of player modeling while the third section
will discuss several approaches that are being used on this
field, presenting the techniques and related works to them.
Section 4 presents a discussion about several experimental
platforms available for researchers. Finally, Section 5 brings
the conclusion and directions for future work.

II. PLAYER MODELING TAXONOMY

In order to build a taxonomy, it is necessary to firstly adopt
a common name to the field. While some papers refer to it
as Player Modeling, others, as those from Valkenberg [37]
and van den Herik, Donkers and Spronck [38] use the term
Opponent Modeling. As Spronck and den Teuling discussed in
[31], we believe the term Opponent Modeling is too specific
since it excludes approaches that research the same tasks with
different goals like, for example, cooperative work. Thus, we
adopt the more general name: Player Modeling.

Player modeling can be defined as an abstract description of
the current state of a player at a moment. This description can
be done in several ways like satisfaction, knowledge, position
and strategy [38].

The main goal of a game is to entertain its players, that
are different from each other and may not enjoy the same
challenges or possibilities of the game. When its preferences,
consequently its satisfaction, are modeled, we may be able to



Description Categories Goals Applications Methods Implementation
Knowledge Online Tracking Collaboration Speculation in Search Action Modeling Explicit
Position Online Strategy Recognition Adversarial Tutoring Preference Modeling Implicit
Strategy Off-line Review Storytelling Training Position Modeling
Satisfaction Substitution Knowledge Modeling

TABLE I
PLAYER MODELING TAXONOMY SUMMARY

adapt the gameplay to each player. This is called satisfaction
modeling.

More related to agents’ artificial intelligence, we may want
to model the player knowledge, since this can be useful in
several environments with imperfect information. A concrete
example is found in games that have fog of war, in which
answers to the following questions can be very useful: which
part of the map the player knows? Does it know our position?
In a game with constant evolution, which evolution level it has
already achieved? All these questions may be answered with
knowledge modeling.

Similarly, we can model the player movement. Once we are
in a partially observable environment, the position of other
players is generally an important information since it can
guide your strategy or actions. This is generally called position
modeling.

A higher-level modeling is the strategy modeling, which
intends to interpret the player actions and relate them with
game goals, i.e., we abstract low-level actions seeking a high-
level goal. For example, if we want to know our adversary
aggressiveness, we will not be concerned with particular
actions but with its strategy along the game.

These different descriptions lead us to different levels or
categories of player modeling use. The lowest level is the
Online Tracking which is concerned in predicting immediate
future actions. The next level (Online Strategy Recognition) is
related to strategy recognition as it involves the identification
of a set of actions as a higher level objective or strategy.
Finally, the Off-line Review is the evaluation of a game log,
after its finish. This last level is what many professional
players do when they are “studying” their adversaries for a
game. Laviers et. al. [15] discuss these three topics and argues
that Online Tracking is used for single players while Online
Strategy Recognition can be applied to entire teams. This is
true since there is not a granularity for team immediate actions
but it is important to note that we can recognize strategies for
individual players.

As mentioned in the previous section, we firmly believe that
Player Modeling is a suitable approach to improve the artificial
intelligence of non-player characters (NPCs) in games. This
improvement can be seen in different types of goals for the
NPCs, that can be divided in three main sets: to collaborate
with the human players, be their opponents, or to be neutral
to them but part of the story.

The first set, related to the collaborative agents, is very
difficult because human players have expectations when being
aided by non-player characters. These expectations are related
to their actions: frequently, humans players are not able to act

properly because the non-player characters will not behave
accordingly as an unique team. Most of the games implement
agent coordination and collaboration through basic orders such
as “Attack”, “Patrol” and “Hide”. The main challenge would
be to make these agents act autonomously according to the
player behavior, without the need of specific orders.

The second set, the modeling of opponents, has motivation
even on literature from centuries ago: Sun Tzu once said
“Know your enemy and know yourself and you can fight
a thousand battles without disaster” [36]. In addition to the
advices of a historical general, it is very common for human
players to study their adversaries before a match. Kasparov,
the great chess player, is an example [4]. Modeling opponents
is a fundamental aspect in making games more immersive
and challenging, so this is where most of the works in player
modeling focuses.

One last possible goal developers can be concerned with
is storytelling. In complex games, not all agents are allies or
enemies. They can be neutral to players, being part of the
scenario and interacting with them to help advancing the plot
(in a medieval world not all people are warriors or mages,
there are common people that should make the story more
immersive). Many times this interaction is offered to improve
the storytelling of a game since once we model the player we
may adjust all neutral agents to act properly to him. Artificial
emotions, for example, can be used here.

In a lower abstraction level we can list, as discussed in [38],
four main applications to player modeling: speculation in
heuristic search, tutoring and training, non-player characters
and multi-person games. We renamed and redistributed them in
terms of importance and generality. We renamed speculation in
heuristic search to speculation in search and we split tutoring
and training as two different applications. Finally, we grouped
non-player characters and multi-person games as substitution
application. Several other applications can be listed but we
believe that this four cover a satisfactory spectrum of them.

Speculation in search is generally applied to games in
which Artificial Intelligence is more related to search in game
trees, generally for adversarial goals. Depending on the game
complexity it may be infeasible to check every possibility and
even pruning techniques such α− β are not enough. In these
scenarios, we may use player modeling to create a bias which
helps the search heuristics. Carmel and Markovitch were one
of the first to investigate this possibility [4].

The collaborative goal can be expressed as the use of
player modeling to assist players. This can be done with
tutoring, when a non-human agent teaches the player (the
player modeling is important because this tutoring process



can focus on the player preferences) or training, with the
presentation of challenges suited to the player characteristics
(weakness, style or strategy, for example). Its behavior is
important because if the non-player characters do not act
properly the game will no longer be interesting to the player
[29].

The final main application to player modeling is in multi-
person games. The objective is to allow non-player characters
substitute human-players in multi-player games, even mim-
icking their behavior. It does not matter if the non-player
characters will be allies or enemies, they must be able to
replace the player to keep the previous game balance. Most
of the games does not have this approach and its gameplay
may be impaired by players that are not able to play the whole
game.

We can also divide the player modeling field in more
specific methods, which are closely related to its description
purpose. Spronck and den Teuling [31] mentioned that most
of the research in player modeling is done with action models,
that are an attempt to model players’ activities in a way that
makes possible to predict the next player’s action (Online
Tracking). Indeed many works follow this line and [26] is
a classical example since it tries to predict if an agent will
declare war against other in the Civilization IV game. Another
important work is [13] that anticipated actions in the Quake II
game.

Spronck and den Teuling define preference modeling in [31]
as the modeling of the “player desires to accomplish or
experience in the game, and to what extent he is able to do
that”. This is a very precise definition and, in fact, is concerned
to the player’s satisfaction. Some of the recent works that
addressed this problem are [17] and [22].

The last two listed methods are positioning and knowledge
modeling. The first one attempts to obtain relevant information
about players location while the second tries to model the
player knowledge itself, it means, what he already knows.

Positioning modeling can be better defined as the attempt
to predict non-player characters positions on games with
imperfect information (fog of war, for instance). This is a
valuable information because in general, the knowledge of
a player position gives a tactical advantage in a game, as
previously discussed here. This approach may be seen as an
attempt to present smart non-player characters which does not
break game rules (ignoring fog of war for example), a common
used resource as Laird and van Lent already discussed [14].
Valkenberg worked with this problem trying to foresee players
position in World of Warcraft [37], despite the fact it did not
have much success, the problem he worked was a classical
one. A more successful approach was presented in [12] in the
Counter Strike: Source game.

Knowledge modeling, on the other hand, tries to “pre-
dict” the other players knowledge, humans or not. Cunha
and Chaimowicz in [5], for example, developed an advice
system to RTS players that implemented a predictor of the
technological level of an agent based on its units. It was done
in the game Wargus modeling a reverse path in the dependency

tree of the game, deriving what are the technologies known
by the enemy from the observation of existent buildings and
units.

Once we defined some of the player modeling’ subsets
related to goals, applications, research areas, among others,
we may finish this section with the lower abstraction level
of discussion: the implementation. Two approaches can be
highlighted: explicit and implicit.

Spronck says that “An opponent [player] model is explicit
in game AI when a specification of the opponent’s [player’s]
attributes exists separately from the decision-making process”
[30]. Thus, an explicit player model is separated from the
main source code and generally implemented through scripts
or XML files. On the other hand, in implicit approaches, the
attributes are generally embedded and diluted in different parts
of the code, which makes the task of identifying and describing
these attributes more difficult.

The main components discussed in this section are summa-
rized in Table I. We believe that they can be a start point
towards a more comprehensive taxonomy of this area. In
the next section we review and discuss some common AI
techniques used in Player Modeling.

III. COMMON TECHNIQUES

Several AI techniques have been studied and used for Player
Modeling both in the academy and in the game industry.
This section presents the most important techniques and some
works in which they have been applied.

One of the first works that presented a kind of taxonomy
of player modeling techniques was [38] and one of its main
concerns was the player model representation. This is not a
simple question since van den Herik, Donkers and Spronck
[38] affirm that “the internal representation of an opponent
model [player model] depends on the type of knowledge that
it should contain and the task that the opponent [player]
should perform”. The authors also discuss several techniques
that make this possible: evaluation functions, neural networks,
rule-based models, finite-state machines, probabilistic mod-
els, and case-based models. We will resume this discussion
and will also add other possibilities such as genetic algo-
rithms/programming and Monte-Carlo search.

Evaluation functions are concerned in understanding and
modeling how players evaluate the game states. Once we
have modeled the way a player sees the game, we can
better predict its future actions, using search algorithms for
example. A specific evaluation function can be seen as a player
model. This approach is proposed in [4] where the authors
define player model as a “recursive structure consisting of the
opponent’s evaluation function (...)”. Their method uses this
model to set the utility function of a node in a tree search. An
example of this concept in storytelling (drama management)
is presented in [25] that modeled the player satisfaction with
a function that is obtained by its behavior.

Other technique, generally more complex than evaluation
functions, are neural networks. They are widely used in
different applications and can also be used in games. A neural



network can be seen as a “black box” that maps inputs to
outputs. This black box is implemented through a set of
interconnect nodes (neurons) that are activated according to
their weighted inputs. A training process is used to adjust the
weights to the desired objective. Some of the works which
used this technique are [22] that collected several gameplay
statistics and used Single-Layer and Multi-Layer Perceptrons
(special types of neural networks) to develop a model of
player satisfaction, and [17] that used Self-Organizing Maps
to automatically generate player models groups and then use
Single-Layer Perceptrons to fit a non-linear function that
relates the game statistics and these groups. Neural networks
are more established than other techniques discussed here and
have also been used in commercial games such as Creatures
and Black & White [3].

Rule-based models consist of a set of conditions that, when
satisfied, generate a series of actions. It’s very easy to be
implemented and tested and maybe for this reason it is widely
used in the game industry. Finite-State Machines (FSMs) can
be seen as a variation of Rule-based models. Fairclough et.
al. [10] affirmed that FSMs were the most used technique
in FPS games and a more recent work [21] corroborated it
citing several authors who affirm that many games implement
non-player characters artificial intelligence with Hierarchical
Planners, Hierarchical FSMs and Behavior Trees.

A variation of FSMs are Probabilistic Models since they
are FSMs augmented with state transition probabilities on the
edges. They are useful in games with imperfect information,
such as Poker for example [38]. We can also list Fuzzy State
Machines (FuSM) that can be seen as a generalization of
FSMs, in which transitions are modeled using fuzzy rules
instead of boolean logic. They receive a degree of membership
since a FuSM can be at more than one state in a given moment.

Case-Based Models are a different approach from those
being discussed. It consists in a case base with situations
and actions. It is used with a query to the case base and the
selection of an appropriate action, based on the actions of the
selected cases. It is useful because it is easily updated and
expanded with new cases, as discussed by [38].

Different techniques from those listed in [38] are genetic
programming (GP) and genetic algorithms (GA), which are in-
spired by evolution theory: solutions (or evaluation functions,
among others) are modeled as chromosomes and iteratively
evolve these chromosomes applying operators like mutation
and cross over to explore the search space trying to improve
the solution. Its intuition is to combine the best solutions
(chromosomes) in order to generate better ones, also applying
a random factor (mutation) to introduce new solutions. There
are several works that use GP and GA, not necessarily to
model opponents, but somehow to improve their behavior.
Spronck and Posen [32], for example, obtained a high level
strategy for the RTS game Wargus with genetic algorithms
where the strategy was defined by the sequence of buildings
that are constructed during the game.

Another interesting approach is Monte-Carlo Tree Search
(MCTS) that is based on Monte-Carlo simulations: it performs

game simulations that are used to estimate the values of game
states and actions. This information is used to progressively
improve the quality of the simulations. Ponsen et al. [24] have
used MCTS in poker, to allow the search algorithm to focus
on relevant parts of the game tree. They also mentioned that
MCTS is recognized “as the current paradigm for computer
Go”. Branavan et al. [1] developed a different work using
MCTS in the TBS game Civilization II (they also used neural
networks). Their approach consisted in using value function
approximation locally in time to the current set of possibilities.
They also automatically extracted domain knowledge from
texts and this domain was responsible for the agents behavior.

A whole new area that is receiving increasingly attention
is machine learning. Some of the techniques we already
discussed can be seen, in different levels, as learning algo-
rithms. The discussion about learning algorithms generates
an obvious question: what can we learn? van den Herik,
Donkers and Spronck [38] tries to answer this question with
three concepts: evaluation functions, probabilistic models and
opponent behavior. It is interesting to observe that some of
these concepts have already been discussed above. This is not
a closed and well defined list and other possibilities can also be
listed as learning player preferences or player decision trees.
Despite not being discussed in details in this paper, learning
algorithms applied to player modeling is a very interesting
area and can be the subject of another entire paper.

It is important to remark that there are many other ap-
proaches and it is impossible to list and discuss all of them.
Game development demands knowledge from several fields
of computer science and contributions may come from every-
where. An example of this is [21], where the authors made an
analogy between compilers and behavior. They modeled the
cognitive system of a character as a compiler, using concepts
like token, lexical analysis and syntactic analysis. We also
have more traditional approaches that have not been discussed
here like Input-Output Hidden Markov Model used by [11] to
recognize players goals or Multi-agent approaches intending
to improve other techniques results like MCTS [16].

In the next section we present some platforms that allow
us to experiment and validate research works in artificial
intelligence for games. Although these platforms are not ex-
clusive for player modeling, we discuss some player modeling
research topics for some game genres.

IV. SOME PLATFORMS

As previously discussed, sometimes it is very difficult to
experiment and validate new AI approaches in games. Part of
this difficulty is due to the fact that we need an effective and
complete game to validate our hypothesis. To validate any
artificial intelligence algorithm in games we have two main
paths: (i) build our own game; (ii) integrate our algorithms
with some existing game. Both are not trivial to do.

The first alternative, build our own game, may not be
interesting because it is extremely time-consuming and the
result will be a prototype, probably with simpler rules and
environments that can be useful but will not have the same



appeal as a complete game. Furthermore, for scientific rea-
sons, despite a possible availability of the source code, the
comparison of different algorithms, of different researchers,
become very hard. Finally, since it is a prototype, there will
not be expert players for tests with this platform. On the other
hand, building our own game facilitates the implementation
of the desired algorithms and the adaptation of the code to
test different techniques. This approach is frequently used and
some examples are presented in [11], [17] and [21].

The use of a pre-built game, maybe a commercial one, is
more attractive for us. We can subdivide this approach in two
different game types: (i) open-source games and (ii) games
which supports scripted AI (explicit or implicit implementa-
tions). The following sections will try to list some suitable
game platforms and interfaces for game AI research. This
discussion is also available on our research group website1

where we are able to present more details about each platform.

A. Action Games

This game genre offers many possibilities to researchers
since strategy, knowledge, position and satisfaction can be
modeled in this type of game. It allows several applications
as tutoring and substitution of human players.

Some of the available platforms that we judge interesting
to list are the following:

1) Counter Strike: Source (CS:S): it is a FPS multiplayer
game that was published by Valve Software in 2004. Its
gameplay consists in two opposing teams (Terrorists and
Counter-Terrorists) that are in constant military combat. A
common goal for every match is to kill your enemies, besides
team-specific tasks as enable/disable bombs and arrest/rescue
hostages. Valve Software has made the Source Engine SDK
available: it allows common players create particular game
mods, which can be customized in configuration files and
source code (in C++). The computer controlled agents (bots)
in CS:S are server-side. An example of research done in this
platform can be found in [12].

2) Doom, Quake, Wolfstein 3D: these are FPS games whose
source code has been made available by its creators. They are
grouped because have very similar characteristics and they are
produced by the same company, id Software. They provide
these games in two different ways: the complete source code
or through SDKs that contain the main source-code of the
game. In this case, it is possible to make changes and compile
the code generating DLLs that shall replace the older ones.
Quake 4 is the most recent game that has been made available
in SDK form, being released in 2006. Some works that used
Quake II and III as testbed platforms are [13], [33], [34], [35]
and [28]. The source-codes of these titles are written in C/C++
and are available on the FTP link2 of the company.

B. Adventure Games

Adventure Games are more limited to player modeling re-
search since they do not have physical challenges or teams, in

1http://www.j.dcc.ufmg.br/platforms.html
2ftp://ftp.idsoftware.com/idstuff/

general. In spite of that, its interactive story and puzzle-solving
allows research in storytelling and collaboration. We could
also model players satisfaction adjusting puzzle difficulties
according to its satisfaction. An interesting validation platform
is the Adventure Game Studio, presented next.

1) Adventure Game Studio (AGS): this is a drag and drop
tool that allows the creation of adventure games similar to the
classic ones from Sierra and LucasArts studios of the 90’s. It
is free to non-commercial use. Several game aspects can be
customized as dialogs, graphics, scripts in Java/C#, etc. The
AGS manages some game parts as menus, load/save functions,
pathfinding and scrolling rooms. Moreno-Ger et. al. refers to
this platform as an option to creation of adventure games [18].

C. Platform Games

This game genre allows research in different aspects of sat-
isfaction modeling, for example, collaboration and adversarial
goals. Some of the most well-succeeded games in history are
in this genre and we decided to list maybe the two most
significant: Mario and Sonic.

1) Infinite Mario Bros: Super Mario Bros is an 2D ac-
tion/platform game released in 1985 by Nintendo. The game
goal is to control the game protagonist, Mario over the
Mushroom Kingdom, fighting against Bowser, the villain, to
save princess Peach. The Infinite Mario Bros is an open source
project that mimics Super Mario Bros. It was developed in Java
and is used as testbed in papers like [22] and [27]. Also, an
Infinite Mario Bros adaptation is used in the Mario Artificial
Intelligence Championship3. A similar open source project is
the Secret Maryo Chronicles, written in C++. In both projects
the game artificial intelligence shall be modified directly on
the source code.

2) Open Sonic: Sonic the Hedgehog is a 2D action/platform
game released by SEGA in 1991. Its objective is to gather
items and to defeat non-player characters while the player
advances through the map using its skills and reflexes. Open
Sonic is an open source project based on the game Sonic
the Hedgehog. It allows the player to control three different
characters with specific functionalities to interact with the
scenario and defeat its enemies. New items, enemies and
bosses may be created with Object Scripts or changing its
source code, written in C.

D. Role Playing Games

RPG games provide several research possibilities. Most of
the topics discussed in this paper can be, somehow, studied
in this genre since it provides a rich environment that allows
interactive storytelling, strategy definitions and can be played
both in single and multiplayer modes, in a cooperative or
adversarial fashion. This environment is very interesting for AI
researchers and this is confirmed by the number of available
platforms and published papers.

3http://www.marioai.org/



1) Baldur’s Gate I and II: this is a RPG game developed by
BioWare, with its first version being released in 1998. It was
developed following the Forgotten Realms RPG rules. In this
game the player evolves over the plot chapters through dialogs,
quests and battles. The versions I and II were developed with
the game engine Infinity which has some unofficial editors for
the creation of mods, such as Near Infinity, Dialog Checker
and Weidu. These editors allow dialog, sounds, GUI, and items
customizations, besides AI scripts. An interesting work that
used this platform is [23].

2) Neverwinter Nights: this is a 3D RPG game that was
also published by BioWare, in 2002. It is based on the third
edition of the RPG D&D (Dungeons and Dragons). As in
Baldur’s Gate, the gameplay consists in evolving the player
over time by completing quests, gathering items and interact-
ing with non-player characters. Its source code is private but
BioWare published an official tool called Aurora Neverwinter
Toolset that allows the modification of several games aspects
using the script language NWScript. With this tool, it is
possible to create game modules with environments and scene
objects with customized parameters, as non-player characters,
items, waypoints and triggers. There is a great number of
works that used this platform and some examples are [6], [23],
[39].

3) RunUO: Ultima Online Server Emulator: Ultima Online
(UO) was one of the first Massively Multiplayer Online RPG
Games (MMORPGs). It was released in 1997 by Origin Sys-
tems. Its fantasy universe is based on the Ultima series and it
has had several expansions since its release. Its official servers
are still online nowadays, despite its hosting being specific to
some countries. UO fans developed several server emulators
that allow the customization of several game aspects. RunUO
is one of these emulators: it receives connections from all UO
official clients besides an unofficial, open source client called
Iris 2. It was developed in C# and allows a complete game
customization.

E. Simulation Games

Simulation Games are useful for player modeling research,
not only for entertainment purposes but also for validation and
experimentation of models that run outside games. It offers a
wide range of possibilities since it can, in theory, simulate any
world event. Its possibilities shall be analyzed case by case.

1) Flight Gear: is an open-source 3D flight simulator. The
project goal is to offer a sophisticated framework for realistic
flight simulations in private projects, both commercial and
academic, as in [9]. Several airplanes, with realistic controls,
and different scenarios based on the most recent data from The
Shuttle Radar Topography Mission (SRTM) are available. We
can modify its source code, written in C++, or its 3rd party
extensions.

2) The Open Racing Car Simulator (TORCS): is an open
source 3D race simulator that allows disputes between real
pilots or computer-controlled pilots. The opponents artificial
intelligence can be written in C or C++ directly in the platform
source code. It has a good 3D graphical quality and an accurate

physics, being used as race game or as artificial intelligence
platform, as done in [19].

F. Sports Games

Sports games are an excellent environment for experimenta-
tion of player modeling. They offer several important problems
as teamwork behaviors, strategy adaptation to the players style
or the tutoring and training possibilities. Unfortunately we
could not find many research platforms for this promising
environment.

1) Super Tux Kart: this is an open source kart racing game.
Its game mechanics consist in the racing against real pilots
or computer-controlled agents, gathering special items along
runway. It is similar to Super Mario Kart, with 3D graphics
and physics engine. New 3D player models can be inserted
from XML add-ons and the AI customization for them can be
written in C++ in the source code. It has been already used
in research works such as [27].

G. Strategy Games (RTS and TBS)

This game genre is certainly one of the most challenging for
artificial intelligence. We have several research topics, many of
them listed in [2]. As RPG games, the challenging environment
with a large number of agents and different game strategies
attracts several researchers. This is evidenced by the great
number of platforms and published papers.

1) Civilization IV: this is a turn-based game released in
2005. There are two different interfaces to edit this game:
XML and the source-code. The XML interface offers the pos-
sibility of configuring several parameters of the game, as the
agents “flavors” [31] while the source-code interface is similar
to the interface presented in Quake 4: it is a SDK that allows
people to change the source code of the game and compile it
generating a DLL that replaces the original one. This is one of
the most complex strategy games, with several possibilities for
development, game ending, agents behavior, among others. To
illustrate this statement, Civilization IV presents six different
victory conditions [7]. Due to its complexity and multiple
possibilities, it has been largely used in game AI research:
[7], [26], [31], [41] are some of the authors that have used
this platform to validate their theories. Besides Civilization
IV we also have other versions and variants of the games of
the Civilization series [41]. One of the most popular variants
is the open source version of Civilization II called FreeCiv.
Branavan, Silver and Barzilay have recently used this platform
in their research [1]. C-Evo is another open-source variant of
Civilization II and, as FreeCiv, is deeply discussed in [41].

2) ORTS: this is a RTS engine implemented in a
client/server architecture with 2D or 3D graphics. As any RTS
platform, it is largely used in research works dealing with
real-time artificial intelligence such as pathfinding, imperfect
information treatement, scheduling and planning. Users are
responsible for defining the game characteristics and this is
done by a script that describes the combat units, structures
and available interactions. The server side loads these config-
urations and waits the clients connection. The units artificial



intelligence is written in C++ in the client side. Once the user
is connected to the server it can send commands to its objects.
This platform was used from 2006 to 2009 in the Open RTS
Game AI Competition promoted by the Artificial Intelligence
for Interactive Digital Entertainment Conference (AIIDE). It
is described in details in [2].

3) Starcraft I and II: StarCraft is a commercial real time
strategy game with fictional military characteristics. Star-
Craft II Wings of Liberty was developed and released in 2010
by Blizzard Entertainment. Its source code is not available but
the StarCraft II Editor is an official tool to game modding.
This tool does not require programming knowledge and allows
the customization of maps, triggers, text, buildings, weapons
and combat units. Other option to game editing is the Galaxy
Scripts (based on C) that can be imported by this editor.
The scripts are edited with MPQEditor (unofficial). StarCraft
Brood War is an older game version, released in 1998. There is
an unofficial API for it called BWAPI that allows the creation
of AI modules in C++ that are inserted in the game by loaders
such as Chaoslauncher and MPQDraft. BWAPI is used since
2010 in the StarCraft AI Competition organized by the AIIDE.
One of the recent works that have used this platform is [40].

4) Wargus: This RTS game is a mod of the game
Warcraft II, released by Blizzard Entertainment in 1995. It
is an open source project organized in two levels: the core,
with its basic game functions (engine Stratagus) done in C++
and a higher level, the game logic, implemented in Lua. Two
of the many papers that used Wargus are: [5], [32].

H. Off-line Review

Player Modeling research does not always require game
modifications. A whole category is independent of the game
code: Off-line Review. This category requires only the game
monitoring and this can be done even if we are not able to
edit the source code (or a script). A work that exemplifies this
is [8] that used the EIDOS Suite Metrics to monitor the game
Tomb Raider: Underworld.

The EIDOS Suite Metrics4 is an instrumentation system
which records game metrics from EIDOS Studios games.
Game metrics are transmitted to an SQL-server by an Extract,
Transform and Load (ETL) process through which they are
logged as sequences of events. These captured data can now
be processed and extracted, creating reports for the interested
parties within the game development process (e.g. game de-
sign, production, quality assurance and marketing).

V. CONCLUSION

In this work, we proposed and discussed a taxonomy
for player modeling research gathering and organizing infor-
mation from several different sources. This taxonomy was
summarized in Table I, which tries to characterize the most
important topics in this area. We also expanded a discussion
from [38] about the most common techniques used in this field

4This is a proprietary software but we judged valid to describe its approach

presenting other techniques and several relevant recent works
that have used some of them. Finally, we did an analysis of
player modeling research possibilities in several game genres
and also listed suitable game platforms for experimentation,
discussing their main characteristics. We consider that this is
an important information since it is not widely available for
new researchers, which can have much more difficult in the
area for not knowing these possibilities. Based on the concepts
and techniques organized here and also on the listed platforms,
we believe that this work will be a very useful text to new
player modeling researchers.

There are several works that can be developed from this one,
which presented the general concepts of player modeling. A
more quantitative work can be developed, using the taxonomy
proposed here, to analyze the current research in player
modeling, classifying the related papers in terms of platforms,
techniques and description purposes. Also, as we previously
said, a complete new analysis can be done in terms of learning
algorithms. First of all, we may correlate the main learning
techniques to the main problems of the field. We could also
build a survey of the relevant works that have used these
techniques, analyzing its use in the game industry. Finally,
another possible work related to this paper is an analysis of
the current use of all the techniques discussed here (or even a
higher set, with learning, for example) in commercial games.
A work that tried to do this was [38] but its analysis was
restricted to few games. This would be certainly an interesting
but hard work since the code of most commercial games is
not available for academic research.
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