
 C
reate

Anime Characters With

G
irl

s
M

an
ifold

Create Anime Characters with A.I. !

Yanghua Jin
School of Computer Science

Fudan University
yanghuajin94@gmail.com

Jiakai Zhang
School of Computer Science
Carnegie Mellon University

zhangjk95@gmail.com

Minjun Li
School of Computer Science

Fudan Univerisity
li.akizora@gmail.com

Yingtao Tian
Department of Computer Science

Stony Brook University
alan.yt.tian@gmail.com

Huachun Zhu
School of Mathematics

Fudan Univerisity
tim.zhc@gmail.com

Zhihao Fang
Department of Architecture

Tongji Univerisity
fangzhihao126@gmail.com

Abstract

Automatic generation of facial images has been well studied after the Gen-
erative Adversarial Network(GAN) came out. There exists some attempts
applying the GAN model to the problem of generating facial images of
anime characters, but none of the existing work gives a promising result.
In this work, we explore the training of GAN models specialized on an
anime facial image dataset. We address the issue from both the data and
the model aspect, by collecting a more clean, well-suited dataset and lever-
age proper, empirical application of DRAGAN. With quantitative analysis
and case studies we demonstrate that our efforts lead to a stable and high-
quality model. Moreover, to assist people with anime character design, we
build a website1 with our pre-trained model available online, which makes
the model easily accessible to general public.

1 Introduction

We all love anime characters and are tempted to create our custom ones. However, it takes
tremendous efforts to master the skill of drawing, after which we are first capable of designing
our own characters. To bridge this gap, the automatic generation of anime characters offers
an opportunity to bring a custom character into existence without professional skill. Besides
the benefits for a non-specialist, a professional creator may take advantages of the automatic
generation for inspiration on animation and game character design; a Doujin RPG developer
may employ copyright-free facial images to reduce designing costs in game production.
Existing literature provides several attempts for generation facial images of anime characters.
Among them are Mattya[16] and Rezoolab[24] who first explored the generation of anime
character faces right after the appearance of DCGAN[22]. Later, Hiroshiba[8] proposed
the conditional generation model for anime character faces. Also, codes are made available
online focusing on anime faces generation such as IllustrationGAN[28] and AnimeGAN[13].

1http://make.girls.moe

コミックマーケット 92 (Comiket 92) (Summer 2017), 東京ビッグサイト.

http://make.girls.moe

However, since results from these works are blurred and distorted on an untrivial frequency,
it still remains a challenge to generate industry-standard facial images for anime characters.
In this report, we propose a model that produces anime faces at high quality with promising
rate of success. Our contribution can be described as three-fold: A clean dataset, which we
collected from Getchu, a suitable GAN model, based on DRAGAN, and our approach to
train a GAN from images without tags, which can be leveraged as a general approach to
training supervised or conditional model without tag data.

2 Related Works

Generative Adversarial Network (GAN) [5], proposed by Goodfellow et al., shows impressive
results in image generation [22], image transfer[9], super-resolution[12] and many other
generation tasks. The essence of GAN can be summarized as training a generator model
and a discriminator model simultaneously, where the discriminator model tries to distinguish
the real example, sampled from ground-truth images, from the samples generated by the
generator. On the other hand, the generator tries to produce realistic samples that the
discriminator is unable to distinguish from the ground-truth samples. Above idea can be
described as an adversarial loss that applied to both generator and discriminator in the
actual training process, which effectively encourages outputs of the generator to be similar
to the original data distribution.
Although the training process is quiet simple, optimizing such models often lead to mode
collapse, in which the generator will always produce the same image. To train GANs stably,
Metz et al. [18] suggests rendering Discriminator omniscient whenever necessary. By learn-
ing a loss function to separate generated samples from their real examples, LS-GAN[21]
focuses on improving poor generation result and thus avoids mode collapse. More detailed
discussion on the difficulty in training GAN will be in Section 4.2.
Many variants of GAN have been proposed for generating images. Radford et al. [22]
applied convolutional neural network in GAN to generate images from latent vector inputs.
Instead of generating images from latent vectors, serval methods use the same adversarial
idea for generating images with more meaningful input. Mirza & Osindero et al. introduced
Conditional Generative Adversarial Nets [19] using the image class label as a conditional
input to generate MNIST numbers in particular class. Reed et al. [23] further employed
encoded text as input to produce images that match the text description. Instead of only
feeding conditional information as the input, Odena et al. proposed ACGAN[20], which also
train the discriminator as an auxiliary classifier to predict the condition input.

3 Image Data Preparation

It is well understood that image dataset in high quality is essential, if not most important,
to the success of image generation. Web services hosting images such as Danbooru2 and
Safebooru3, commonly known as image boards, provide access to a large number of images
enough for training image generation models. Previous works mentioned above all base their
approaches on images crawled from one of these image boards, but their datasets suffer from
high inter-image variance and noise. We hypothesize that it is due to the fact that image
boards allow uploading of images highly different in style, domain, and quality, and believe
that it is responsible for a non-trivial portion of quality gaps between the generation of real
people faces and anime character faces. In order to bridge such a gap, we propose to use a
more consisting, clean, high-quality dataset, and in this section we introduce our method of
building such a dataset.

2

Figure 1: Sample Getchu page and the detection result,http://www.getchu.com/soft.
phtml?id=933144. Red line indicate the original bounding box and blue line indicate the
scaled bounding box. Copyright: Frontwing, 2017

3.1 Image Collection

Getchu 4 is a website providing information and selling of Japanese games, for which there
are character introduction sections with standing pictures (⽴ち絵). Figure 1 shows one
sample character introduction from the site. These images are diverse enough since they
are created by illustrators with different styles for games in a diverse sets of theme, yet
consisting since they are all belonging to domain of character images, are in descent quality,
and are properly clipped/aligned due to the nature of illustration purpose. Because of these
properties, they are suitable for our task.
Our collection of images consists of the following steps. First we execute a SQL query on
ErogameScape’s Web SQL API page5 to get the Getchu page link for each game. The
SQL query we used is described in Appendix 8.1. Then we download images and apply
lbpcascade animeface 6, an anime character face detector, to each image and get bounding
box for faces. We observe that the default estimated bounding box is too close to the face
to capture complete character information that includes hair length and hair style, so we
zoom out the bounding box by a rate of 1.5x. The difference is shown in Figure 1. Finally,
from 42000 face images in total from the face detector, we manually check all anime face
images and remove about 4% false positive and undesired images.

3.2 Tag Estimation

The task of generating images with customization requires categorical metadata of images as
priors. Images crawled from image boards are accompanied by user created tags which can
serve as such priors, as shown in previous works. However, Getchu does not provide such
metadata about their images, so to overcome this limitation, we propose to use a pre-trained
model for (noisy) estimations of tags.
We use Illustration2Vec[26], a CNN-based tool for estimating tags of anime illustrations7

for our purpose. Given an anime image, this network can predict probabilities of belonging
to 512 kinds of general attributes (tags) such as “smile” and “weapon”, among which we
select 34 related tags suitable for our task. We show the selected tags and the number of
dataset images corresponded to each estimated tag in Table 1. For set of tags with mutual
exclusivity (e.g. hair color, eye color), we choose the one with maximum probability from the
network as the estimated tag. For orthogonal tags (e.g. “smile”, “open mouth”, “blush”),
we use 0.25 as the threshold and estimate each attribute’s presence independently.

2danbooru.donmai.us
3safebooru.org
4www.getchu.com
5http://erogamescape.dyndns.org/~ap2/ero/toukei_kaiseki/sql_for_erogamer_form.php
6https://github.com/nagadomi/lbpcascade_animeface
7Pre-trained model available on http://illustration2vec.net/

3

http://www.getchu.com/soft.phtml?id=933144
http://www.getchu.com/soft.phtml?id=933144
danbooru.donmai.us
safebooru.org
www.getchu.com
http://erogamescape.dyndns.org/~ap2/ero/toukei_kaiseki/sql_for_erogamer_form.php
https://github.com/nagadomi/lbpcascade_animeface
http://illustration2vec.net/

blonde hair brown hair black hair blue hair pink hair purple hair green hair
4991 6659 4842 3289 2486 2972 1115

red hair silver hair white hair orange hair aqua hair gray hair long hair
2417 987 573 699 168 57 16562

short hair twintails drill hair ponytail blush smile open mouth
1403 5360 1683 8861 4926 5583 4192
hat ribbon glasses blue eyes red eyes brown eyes green eyes
1403 5360 1683 8861 4926 5583 4192

purple eyes yellow eyes pink eyes aqua eyes black eyes orange eyes
4442 1700 319 193 990 49

Table 1: Number of dataset images for each tag

Figure 2: t-SNE visualization of 1500 dataset images

4

3.3 Visualization

We would like to show the image preparation and the performance of tag estimation through
visualization. As an approximation, we apply the Illustration2Vec feature extractor, which
largely shares architecture and weights with Illustration2Vec tag estimator, on each image
for a 4096-dimension feature vector, and project feature vectors onto a 2D space using t-
SNE[15]. Figure 2 shows the t-SNE result of 1500 images sampled from the dataset. We
observe that character images with similar visual attributes are placed closely. Due to the
shared weights, we believe this also indicates the good performance in tag estimator.

4 Generative Adversarial Network

4.1 Vanilla GAN

Generative Adversarial Networks proposed by Goodfellow et at.[5] are implicit generative
models. It proves to be an effective and efficient way to generate highly photo-realistic
images in an unsupervised and likelihood-free manner[22]. GAN uses a generator network G
to generate samples from PG. This is done by transforming a latent noise variable z ∼ Pnoise

into a sample G(z). The original GAN uses a min-max game strategy to train the generator
G, imposing another network D to distinguish samples from G and real samples. Formally,
the objective of GAN can be expressed as

min
G

max
D

L(D,G) = Ex∼Pdata
[logD(x)] + Ex∼Pnoise [log(1−D(G(z)))] .

In this formula, the discriminator D try to maximize the output confidence score from
real samples. Meanwhile, it also minimizes the output confidence score from fake samples
generated by G. On contrast, the aim of G is to maximize the D evaluated score for its
outputs, which can be viewed as deceiving D.

4.2 Improved training of GAN

Despite the impressive results of GAN, it is notoriously hard to train properly GAN. [1]
showed the PG and Pdata may have non-overlap supports, so the Jensen-Shannon Divergence
in the original GAN objective is constantly 0, which leads to instability. [3] argued that there
may exist no equilibrium in the game between generator and discriminator. One possible
remedy is to use integral probability metric(IPM) based methods instead, e.g. Wasserstein
distance[2], Kernel MMD[14], Cramer distance[4]. Some recent GAN variants suggest using
gradient penalty to stabilize GAN training[6, 4, 25, 11]. Mattya[17] compared several recent
GAN variants under the same network architecture and measures their performance under
the same metric.
Here, we use DRAGAN proposed by Kodali et al.[11] as the basic GAN model. As Mattya[17]
shows, DRAGAN can give presumable results compare to other GANs, and it has the least
computation cost among those GAN variants. Compare with Wasserstein GAN and its
variants, DRAGAN can be trained under the simultaneous gradient descent setting, which
make the training much faster. In our experiments, we also find it is very stable under
several network architectures, we successfully train the DRAGAN with a SRResNet[12]-like
generator, model details will be discussed in Section 5.1.
The implementation of DRAGAN is thus straightforward: we only need to sample some
points in local regions around real images and force those samples to have norm 1 gradients
with respect to the discriminator outputs. This can be done by adding a gradient penalty
term to the generator loss. The flexibility of DRAGAN enables it to replace DCGAN in
any GAN related tasks.

4.3 GAN with labels

Incorporating label information is important in our task to provide user a way to control the
generator. Our utilization of the label information is inspired by ACGAN[20]: The generator
G receive random noise z along with a 34-dimension vector c indicate the corresponding

5

Figure 3: Generator Architecture

Figure 4: Discriminator Architecture

attribute conditions. We add a multi-label classifier on the top of discriminator network,
which try to predict the assigned tags for the input images.
In detail, the loss is described as following:

Ladv(D) = −Ex∼Pdata
[logD(x)]− Ex∼Pnoise,c∼Pcond

[log(1−D(G(z, c)))]

Lcls(D) = Ex∼Pdata
[logPD[labelx|x]] + Ex∼Pnoise,c∼Pcond

[log(PD[c|G(z, c)])]

Lgp(D) = Ex̂∼Pperturbeddata
[(||∇x̂D(x̂)||2 − 1)2]

Ladv(G) = Ex∼Pnoise,c∼Pcond
[log(D(G(z, c)))]

Lcls(G) = Ex∼Pnoise,c∼Pcond
[log(PD[c|G(z, c)])]

L(D) = Lcls(D) + λadvLadv(D) + λgpLgp(D)

L(G) = λadvLadv(G) + Lcls(G)

where Pcond indicates the prior distribution of assigned tags. λadv, λgp are balance factors
for the adversarial loss and gradient penalty respectively.

5 Experiments

5.1 Training details

5.1.1 Model architecture

The generator’s architecture is shown in Figure 3, which is a modification from SRRes-
Net[12]. The model contains 16 ResBlocks and uses 3 sub-pixel CNN[27] for feature map
upscaling. Figure 4 shows the discriminator architecture, which contains 10 Resblocks in
total. All batch normalization layers are removed in the discriminator, since it would bring
correlations within the mini-batch, which is undesired for the computation of the gradient

6

norm. We add an extra fully-connected layer to the last convolution layer as the attribute
classifier. All weights are initialized from a Gaussian distribution with mean 0 and standard
deviation 0.02.

5.1.2 Hyperparameters

We find that the model achieve best performance with λadv equaling to the number of
attributes, as Zhou et al.[29] gives a detailed analysis of the gradient in the condition of
ACGAN. Here, we set λadv to 34 and λgp to 0.5 in all experiments. All models are optimized
using Adam optimizer[10] with β1 equaling 0.5. We use a batch size of 64 in the training
procedure. The learning rate is initialized to 0.0002 and exponentially decease after 50000
iterations of training.

5.1.3 Model Training

1997 2000 2003 2006 2009 2012 2015

Figure 5: Sample images in different release years.

2000 2003 2006 2009 2012 2015

Figure 6: Average images from 1000 samples in different release years.

The technology of making game characters and CGs is evolving continuously, therefore the
release year of the game plays an important role for the visual aspect of image quality. As
we can see in the Figure 5, characters before 2003 look old-fashioned, while characters in the

7

recent games is cuter and have better visual quality. Appendix 8.2 shows the distribution
of images in our dataset.
We train our GAN model using only images from games released after 2005 and with scaling
all training images to a resolution of 128*128 pixels. This gives 31255 training images in
total.
On the conditional generation of images, the prior distribution of labels Pcond is critical,
especially when labels are not evenly distributed. In our case, there are only 49 training
images assigned with the attribute “orange eyes” while 8861 images are assigned with the
attribute “blue eyes”.
But we don’t take this in to account in the training stage. To sample related attributes
for the noise, we use the following strategy. For the hair and the eye color, we randomly
select one possible color with uniform distribution. For other attributes, we set each label
independently with a probability of 0.25.

5.2 Generated Results

Figure 7 shows images generated from our model. Different from the training stage, we
set the probability of each label based on the corresponding empirical distribution in the
training dataset here.
By fixing the random noise part and sampling random conditions, the model can generate
images have similar major visual features (e.g. face shapes, face directions). Figure 8 is an
example of that. It is also an evidence of the generalization ability of visual concepts learnt
from corresponding labels, indicating that our model can avoids the brute-force memoriza-
tion of training samples.
Another phenomenon we empirically observed is that the random noise part heavily inference
the quality of the final result. Some noise vector can give good samples no matter what
conditioned on, while some other noise vectors are easier to produce distorted images.
As Table 1 states, labels are not evenly distributed in our training dataset, which results
that some combinations of attributes cannot give good images. In Figure 9, (a)(b) are
generated with well learned attributes like “blonde hair”, “blue eyes”. On contrast, (c)(d) are
associated with “glasses”, “drill hair”, which is not well learned because of the insufficiency
of corresponding training images. All characters in (a)(b) appear to be attractive, but most
characters in (c)(d) are distorted.

5.3 Quantitative Analysis

5.3.1 Attribute Precision

blonde hair brown hair black hair blue hair pink hair purple hair green hair
1.00 1.00 1.00 0.70 0.80 0.75 0.90

red hair silver hair white hair orange hair aqua hair gray hair long hair
0.95 0.85 0.60 0.65 1.00 0.35 1.00

short hair twintails drill hair ponytail blush smile open mouth
1.00 0.60 0.20 0.45 1.00 0.95 0.95
hat ribbon glasses blue eyes red eyes brown eyes green eyes
0.15 0.85 0.45 1.00 1.00 1.00 1.00

purple eyes yellow eyes pink eyes aqua eyes black eyes orange eyes
0.95 1.00 0.60 1.00 0.80 0.85

Table 2: Precision of each label

To evaluate how each tag affect the output result, we measure the precision of the output
result when the certain label is assigned. With each target, we fix the target label to true,
and sample other labels in random. For each label, 20 images are drawn from the generator.

8

Figure 7: Generated samples

Then we manually check generated results and judge whether output images behave the
fixed attribute we assigned. Table 2 shows the evaluation result. From the table we can see
that compared with shape attributes(e.g. “hat”, “glasses”), color attributes are easier to
learn. Notice that the boundary between similar colors like “white hair”, “silver hair”, “gray
hair ” is not clear enough,. Sometimes people may have troubles to classify those confusing
colors. This phenomenon lead to low precision scores for those attributes in our test.
Surprisingly, some rare color attributes like “orange eyes”, “aqua hair”, “aqua eyes” have a
relative high precisions even though samples containing those attributes are less than 1% in
the training dataset. We believe visual concepts related to colors are simple enough for the
generator to get well learned with a extremely small number of training samples.
On contrast, complex attribute like “hat”, “glasses”, “drill hair” are worst behaved at-
tributes in our experiments. When conditioned on those labels, generated images are often
distorted and difficult to identify. Although there are about 5% training samples assigned
with those attributes, the complicated visual concept they implied are far more accessible
for the generator to get well learned.

9

Figure 8: Generated images with fixed noise part and random attributes

5.3.2 FID Evaluation

One possible quantitative evaluation method for GAN model is Fréchet Inception Dis-
tance(FID) proposed by Heusel et al.[7]. To calculate the FID, they use a pre-trained
CNN(Inception model) to extract vision-relevant features from both real and fake samples.
The real feature distribution and the fake feature distribution are approximated with two
guassian distributions. Then, they calculate The Fréchet distance(Wasserstein-2 distance)
between two guassian distributions and serve the results as a measurement of the model
quality.
The Inception model trained on ImageNet is not suitable for extracting features of anime-
style illustrations, since there is no such images in the original training dataset. Here, we
replace the model with Illustration2vec feature extractor model for better measurement of
visual similarities between generated images and real images.
To evaluate the FID score for our model, we sample 12800 images from real dataset, then gen-
erate a fake sample by using the corresponding conditions for each samples real images. After
that we feed all images to the Illustation2vec feature extractor and get a 4096-dimension

10

(a) (b)

(c) (d)

Figure 9: Generated images under fixed conditions. (a) blonde hair, twintails, blush, smile,
ribbon, red eyes (b) silver hair, long hair, blush, smile, open mouth, blue eyes (c) aqua hair,
long hair, drill hair, open mouth, glasses, aqua eyes (d) orange hair, ponytail, hat, glasses,
red eyes, orange eyes

Model Average FID MaxFID-MinFID
DCGAN Generator+DRAGAN 5974.96 85.63

Our Model 4607.56 122.96

Table 3: FID of our model and baseline model

feature vector for each image. FID is calculated between the collection of feature vectors
from real samples and that from fake samples.
For each model, we repeat this process for 5 times and measure the average score of 5 FID
calculation trails. Table 3 shows the result comparing our model with the baseline model.
We observe that SRResNet based model can achieve better FID performance evenly with
less weight parameters.

5.4 Website Interface

In order to make our model more accessible, we build a website interface8 for open access.
We impose WebDNN9 and convert the trained Chainer model to the WebAssembly based
Javascript model. The web application is built with React.js.

8http://make.girls.moe
9https://mil-tokyo.github.io/webdnn/

11

http://make.girls.moe
https://mil-tokyo.github.io/webdnn/

Figure 10: FID decrease and converge to a certain value during the training procedure

Keeping the size of generator model small would be a great benefit when hosting a web
browser based deep learning service. This is because user are required to download the
model before the computation every time, bigger model results much more downloading
time which will affect the user experience. Replacing the DCGAN generator by SRResNet
generator can make the model 4x smaller, so the model downloading time can be reduced
by a large margin.

Figure 11: Our website

Users can manually assign attributes to the generator, and all unassigned attributes will be
sampled based on empirical distribution of the training dataset. All computations are done
on the client side. It takes about 6 ∼ 7s to generate one images on average, the detailed
performance test is discussed in Appendix 8.4.

5.5 Super-Resolution

As Appendix 8.2 shows, the resolution of available training images are not high, making
generation of high resolution facial images from the GAN model directly is difficult. Here

12

we try to build another Super-Resolution network specifically for generation extra high
resolution animation style images to overcome the limitation.
Image (b) in Figure 12 shows the 2x upscaled image with waifu2x10, which is blurred. [12]
gives a comparison of GAN-based super-resolution model and traditional MSE-based super-
resolution model. Their result shows that GAN based models can bring more high-frequency
details to the upscaled images than MSE only models. This is preferred in our situations,
so we choose to implement SRGAN[12] as our super-resolution model.
Image (c) (d) show our attempts of training a SRGAN. (c) is trained with a low adversarial
loss weight and (d) is trained with high adversarial loss weight. We observe that as the
weight of the adversarial loss increasing, the upscaled image looks sharper. However, this
would bring more undesired artifacts to output images.
We observe that the visual quality of anime-style images are more sensitive to extra artifacts
than real photos. We hypothesize that it is due to the fact that color/texture patterns in
anime-style images are much simpler and clearer than real photos, any artifacts would largely
damage the color/texture patterns and make the result looks dirty and messy. This obstacle
limit the usage of GAN in our super-resolution networks.
Discouragingly, we failed to find a model balanced well between the sharpness level and the
artifact strengths, so we choose not add the super-resolution model to our website for now,
and leave the exploration of anime image focused super resolution for future work.

(a) (b)

(c) (d)

Figure 12: Results of 2x super-resolution. (a) The original image. (b) Result from waifu2x
(c)SRGAN with lower adversarial loss (d) SRGAN with higher adversarial loss

6 Conclusion

We explore the automatic creation of the anime characters in this work. By combining a
clean dataset and several practicable GAN training strategies, we successfully build a model

10http://waifu2x.udp.jp/index.ja.html

13

http://waifu2x.udp.jp/index.ja.html

which can generate realistic facial images of anime characters. We publish this report along
with an easy-to-use website service.
There still remain some issues for us for further investigations. One direction is how to
improve the GAN model when class labels in the training data are not evenly distributed.
Also, quantitative evaluating methods under this scenario should be analyzed, as FID only
gives measurement when the prior distribution of sampled labels equals to the empirical
labels distribution in the training dataset. This would lead to a measure bias when labels
in the training dataset are unbalanced.
Another direction is to improve the final resolution of generated images. Super-resolution
seems a reasonable strategy, but the model need to be more carefully designed and tested.
We hope our work would stimulate more studies on generative modeling of anime-style
images and eventually help both amateurs and professionals design and create new anime
characters.

7 Acknowledgement

This report is published as a Doujinshi in Comiket 92, summer 2017, with the booth number
三⽇⽬東ウ 05a.
The work is done when Yanghua Jin works as a part-time engineer in Preferred Networks,
Japan. Special thanks to Eiichi Matsumoto, Taizan Yonetsuji, Saito Masaki, Kosuke Nakago
from Preferred Networks for insightful directions and discussions.
The cover illustration is created by Zhihao Fang and Jiakai Zhang helps create the website.

References
[1] Martin Arjovsky and Léon Bottou. Towards principled methods for training generative adver-

sarial networks. arXiv preprint arXiv:1701.04862, 2017.

[2] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan. arXiv preprint
arXiv:1701.07875, 2017.

[3] Sanjeev Arora, Rong Ge, Yingyu Liang, Tengyu Ma, and Yi Zhang. Generalization and
equilibrium in generative adversarial nets (gans). arXiv preprint arXiv:1703.00573, 2017.

[4] Marc G Bellemare, Ivo Danihelka, Will Dabney, Shakir Mohamed, Balaji Lakshminarayanan,
Stephan Hoyer, and Rémi Munos. The cramer distance as a solution to biased wasserstein
gradients. arXiv preprint arXiv:1705.10743, 2017.

[5] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in
neural information processing systems, pages 2672–2680, 2014.

[6] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron Courville.
Improved training of wasserstein gans. arXiv preprint arXiv:1704.00028, 2017.

[7] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, Günter Klambauer,
and Sepp Hochreiter. Gans trained by a two time-scale update rule converge to a nash equi-
librium. arXiv preprint arXiv:1706.08500, 2017.

[8] Hiroshiba. Girl friend factory - 機械学習で彼⼥を創る -. http://qiita.com/Hiroshiba/
items/d5749d8896613e6f0b48, 2016.

[9] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation
with conditional adversarial networks. arXiv preprint arXiv:1611.07004, 2016.

[10] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[11] Naveen Kodali, Jacob Abernethy, James Hays, and Zsolt Kira. How to train your dragan.
arXiv preprint arXiv:1705.07215, 2017.

14

http://qiita.com/Hiroshiba/items/d5749d8896613e6f0b48
http://qiita.com/Hiroshiba/items/d5749d8896613e6f0b48

[12] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew Cunningham, Alejan-
dro Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang, et al. Photo-
realistic single image super-resolution using a generative adversarial network. arXiv preprint
arXiv:1609.04802, 2016.

[13] Jie Lei. Animegan. https://github.com/jayleicn/animeGAN, 2017.

[14] Chun-Liang Li, Wei-Cheng Chang, Yu Cheng, Yiming Yang, and Barnabás Póczos. Mmd gan:
Towards deeper understanding of moment matching network. arXiv preprint arXiv:1705.08584,
2017.

[15] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of Machine
Learning Research, 9(Nov):2579–2605, 2008.

[16] Mattya. chainer-dcgan. https://github.com/mattya/chainer-DCGAN, 2015.

[17] Mattya. chainer-gan-lib. https://github.com/pfnet-research/chainer-gan-lib, 2017.

[18] Luke Metz, Ben Poole, David Pfau, and Jascha Sohl-Dickstein. Unrolled generative adversarial
networks. arXiv preprint arXiv:1611.02163, 2016.

[19] Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets. arXiv preprint
arXiv:1411.1784, 2014.

[20] Augustus Odena, Christopher Olah, and Jonathon Shlens. Conditional image synthesis with
auxiliary classifier gans. arXiv preprint arXiv:1610.09585, 2016.

[21] Guo-Jun Qi. Loss-sensitive generative adversarial networks on lipschitz densities. arXiv
preprint arXiv:1701.06264, 2017.

[22] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with
deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.

[23] Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt Schiele, and Honglak
Lee. Generative adversarial text to image synthesis. arXiv preprint arXiv:1605.05396, 2016.

[24] Rezoolab. Chainer を使ってコンピュータにイラストを描かせる. http://qiita.com/
rezoolab/items/5cc96b6d31153e0c86bc, 2015.

[25] Kevin Roth, Aurelien Lucchi, Sebastian Nowozin, and Thomas Hofmann. Stabilizing training
of generative adversarial networks through regularization. arXiv preprint arXiv:1705.09367,
2017.

[26] Masaki Saito and Yusuke Matsui. Illustration2vec: a semantic vector representation of illus-
trations. In SIGGRAPH Asia 2015 Technical Briefs, page 5. ACM, 2015.

[27] Wenzhe Shi, Jose Caballero, Ferenc Huszár, Johannes Totz, Andrew P Aitken, Rob Bishop,
Daniel Rueckert, and Zehan Wang. Real-time single image and video super-resolution using
an efficient sub-pixel convolutional neural network. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 1874–1883, 2016.

[28] tdrussell. Illustrationgan. https://github.com/tdrussell/IllustrationGAN, 2016.

[29] Zhiming Zhou, Shu Rong, Han Cai, Weinan Zhang, Yong Yu, and Jun Wang. Generative ad-
versarial nets with labeled data by activation maximization. arXiv preprint arXiv:1703.02000,
2017.

15

https://github.com/jayleicn/animeGAN
https://github.com/mattya/chainer-DCGAN
https://github.com/pfnet-research/chainer-gan-lib
http://qiita.com/rezoolab/items/5cc96b6d31153e0c86bc
http://qiita.com/rezoolab/items/5cc96b6d31153e0c86bc
https://github.com/tdrussell/IllustrationGAN

8 Appendix

8.1 SQL query on ErogameScape

SELECT g.id, g.gamename, g.sellday,
'www.getchu.com/soft.phtml?id=' || g.comike as links

FROM gamelist g
WHERE g.comike is NOT NULL
ORDER BY g.sellday

8.2 Dataset images distribution

Sa

m
pl

es

0
200
400
600
800

1000
1200
1400
1600
1800
2000
2200
2400
2600
2800
3000

Year

1994 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2030

�1

Figure 13: Available dataset images by release years. Note that year=2030 means release
year undetermined

Sa

m
pl

es

0

100

200

300

400

500

600

700

800

900

1000

Short Edge Size

0 7 14 21 28 35 42 49 56 63 70 77 84 91 98 10
5

11
2

11
9

12
6

13
3

14
0

14
7

15
4

16
1

16
8

17
5

18
2

18
9

19
6

20
3

21
0

21
7

22
4

23
1

23
8

24
5

25
2

�1

Figure 14: Available dataset images by short edge size.

16

8.3 Interpolation between random generated samples

Figure 15: Samples in the first column and the last columns are randomly generated under
different combinations of conditions. Although label controlling variables are assigned with
discrete values in the training stage, the result shows that those discrete attributes are still
meaningful under the continuous setting.

8.4 Approximate inference time

Processor Operation System Web Browser Execution Time (s)
I7-6700HQ macOS Sierra Chrome 59.0 5.55
I7-6700HQ macOS Sierra Safari 10.1 5.60
I5-5250U macOS Sierra Chrome 60.0 7.86
I5-5250U macOS Sierra Safari 10.1 8.68
I5-5250U macOS Sierra Safari Technology Preview 33* <0.10
I5-5250U macOS Sierra Firefox 34 6.01
I3-3320 Ubuntu 16.04 Chromium 59.0 53.61
I3-3320 Ubuntu 16.04 Firefox 54.0 4.36

iPhone 7 Plus iOS 10 Chrome 4.82
iPhone 7 Plus iOS 10 Safari 3.33
iPhone 6s Plus iOS 10 Chrome 6.47
iPhone 6s Plus iOS 10 Safari 6.23
iPhone 6 Plus iOS 10 Safari 11.55

Table 4: Approximate inference time on several different environments, note that for Safari
Technology Preview, the computation is done by WebGPU ,while for other browsers, the
computation is done by WebAssembly. We can see that firefox is better optimized with
WebAssembly and faster than other browsers

17

	cover_final
	create-anime-characters (8)
	Introduction
	Related Works
	Image Data Preparation
	Image Collection
	Tag Estimation
	Visualization

	Generative Adversarial Network
	Vanilla GAN
	Improved training of GAN
	GAN with labels

	Experiments
	Training details
	Model architecture
	Hyperparameters
	Model Training

	Generated Results
	Quantitative Analysis
	Attribute Precision
	FID Evaluation

	Website Interface
	Super-Resolution

	Conclusion
	Acknowledgement
	Appendix
	SQL query on ErogameScape
	Dataset images distribution
	Interpolation between random generated samples
	Approximate inference time

