右普遍射
definition.icon $ \left\lang dR, dε \right\rang が函手$ L \colon C \to D から対象$ d \colon D への(右)普遍射 $ \iff \left\lang\textrm{R-univ}\colon C, D; L, d, dR; d\varepsilon \right\rang
where
$ dR\colon C
$ dε\colon dR.L → d
Axiom
$ \forall c, f\colon c.L→ d
$ \exist ! g \colon c→dR, \
$ (g.L);d\varepsilon = f
https://gyazo.com/df5c6bb240f1d8c236b830bf4d1a9cc0
equal.icon
$ \left\lang\textrm{R-univ}\colon C, D; L, d, dR; d\varepsilon \right\rang
$ \iff \left\lang dR, *; d\varepsilon \right\rang \cong \operatorname{term} (L↓d^♯)
このとき、終対象への射が普遍性を担う
$ !=\left\lang g, *^\wedge \right\rang \colon \left\lang c, *; f \right\rang → \left\lang dR, *; d\varepsilon \right\rang
signature.icon
code:R-Univ.sig
2-signature <R-Univ: C, D; L, d, dR; dε> in CAT
Data
0-morph C
0-morph D
1-morph L : C -> D
1-morph d : %I -> D
1-morph dR : %I -> C
2-morph dε
: dR * L => d
: %I -> D
Axioms
3-formula
∀ c : %I -> C
∀ f : c * L => d
∃! f' : c => dR
(f' * L) ; dε = f