USV解析手法一覧
#手法
MSA (Mouse Song Analyzer: Arriaga et al., 2012; Chabout et al., 2015)
VoiCE (Burkett et al., 2015, Sci Rep)
MUSE (Neunuebel et al., 2015)
Ax (Seagraves et al., 2016)
A-MUD (Zala et al., 2017, PONE)
MUPET (Van Segbroeck et al., 2017)
DeepSqueak (Coffey et al., 2019)
USVSEG (Tachibana et al, 2020, PONE)
VocalMat (Fonseca et al, 2021)
DAS (Steinfath et al, 2021)
Premoli2021 (Premoli et al, 2021)
Goffinet2021 (Goffinet et al, 2021)
HybridMouse (Goussha et al, 2022)
TrackUSF (Netser et al, 2022)
BootSnap (Abbasi et al, 2022)
AMVOC (Stoumpou et al, 2021)
table:機能比較
システム名 雑音除去 シラブル分類 備考
Mouse Song Analyzer
MUSE
Ax
A-MUD Y:
MUPET 非負値因数分解 ノイズに弱いらしい
VoiCE
DeepSqueak 分類で除去 DeepNN ラットがメイン
USVSEG 多重窓と平坦化で前処理 -
VocalMat
DAS
Premoli2021
Goffinet2021
HybridMouse
TrackUSF
BootSnap
AMVOC
なんでもコメント
全般
USVSEGは基本的に前処理に特徴があるので、これを他のアルゴリズムも取り入れれば対雑音性能はあがると思う。 その後の分類にはUSVSEG作成者は基本的に興味がないのだが、分類したい人もいると思うので、plugin的なものを用意するか、前処理関数を小分けにパッケージして公開するのが良いだろう、とは思う(python版 by 松本氏はすでにある)
MSA
改良がどんどん進んでいるようでわからない。
VoiCE
MUSE
Ax
使い勝手はどうなのか?
A-MUD
一般的なhanning窓で、スペクトル差分でノイズ除去していたはず。定常ノイズ(ファンの音とか?)しか除けない。
MUPET
ノイズに弱いと聞く
DeepSqueak
ラットに特化している。YOLOとかの画像認識モデルを使っているのだろうか。スペクトログラム上で四角いboundary boxを検出するようなイメージ。
USVSEG
VocalMat
DAS
Premoli2021
いろんな分類手法を試したというもの。SVM、random forest、CNN。ソフトの公開はない。データセットはアクセスできない?
Goffinet2021
VAEのやつ
HybridMouse
TrackUSF
BootSnap
AMVOC
文献とリポジトリ
MSA
Arriaga, G., Zhou, E. P., and Jarvis, E. D. (2012). Of mice, birds, and men: the mouse ultrasonic song system has some features similar to humans and song-learning birds. PLoS ONE 7:e46610. doi: 10.1371/journal.pone.0046610
Chabout, J., Sarkar, A., Dunson, D. B., & Jarvis, E. D. (2015). Male mice song syntax depends on social contexts and influences female preferences. Frontiers in behavioral neuroscience, 9, 76. https://doi.org/10.3389/fnbeh.2015.00076
https://github.com/Neurogenetics-Jarvis/MouseSongAnalyzer
MUSE
Neunuebel, J. P., Taylor, A. L., Arthur, B. J., & Egnor, S. R. (2015). Female mice ultrasonically interact with males during courtship displays. Elife, 4, e06203.  https://doi.org/10.7554/eLife.06203
https://github.com/JaneliaSciComp/Muse
VoiCE
Burkett, Z. D., Day, N. F., Peñagarikano, O., Geschwind, D. H., & White, S. A. (2015). VoICE: A semi-automated pipeline for standardizing vocal analysis across models. Scientific reports, 5(1), 1-15. https://www.nature.com/articles/srep10237
Ax
Seagraves, K. M., Arthur, B. J., & Egnor, S. R. (2016). Evidence for an audience effect in mice: male social partners alter the male vocal response to female cues. Journal of Experimental Biology, 219(10), 1437-1448. https://doi.org/10.1242/jeb.129361
https://github.com/JaneliaSciComp/Ax
A-MUD
Zala, S. M., Reitschmidt, D., Noll, A., Balazs, P., & Penn, D. J. (2017). Automatic mouse ultrasound detector (A-MUD): A new tool for processing rodent vocalizations. PloS one, 12(7), e0181200. https://doi.org/10.1371/journal.pone.0181200
MUPET
Van Segbroeck, M., Knoll, A. T., Levitt, P., & Narayanan, S. (2017). MUPET—mouse ultrasonic profile extraction: a signal processing tool for rapid and unsupervised analysis of ultrasonic vocalizations. Neuron, 94(3), 465-485. https://doi.org/10.1016/j.neuron.2017.04.005
https://sail.usc.edu/mupet/
DeepSqueak
Coffey, K. R., Marx, R. G., & Neumaier, J. F. (2019). DeepSqueak: a deep learning-based system for detection and analysis of ultrasonic vocalizations. Neuropsychopharmacology, 44(5), 859-868. https://doi.org/10.1038/s41386-018-0303-6
https://github.com/DrCoffey/DeepSqueak
USVSEG
Tachibana, R. O., Kanno, K., Okabe, S., Kobayasi, K. I., & Okanoya, K. (2020). USVSEG: A robust method for segmentation of ultrasonic vocalizations in rodents. PloS one, 15(2), e0228907. https://doi.org/10.1371/journal.pone.0228907
VocalMat
Fonseca, A. H., Santana, G. M., Ortiz, G. M. B., Bampi, S., & Dietrich, M. O. (2021). Analysis of ultrasonic vocalizations from mice using computer vision and machine learning. Elife, 10, e59161. https://doi.org/10.7554/eLife.59161
https://github.com/ahof1704/VocalMat
DAS
Steinfath, E., Palacios-Muñoz, A., Rottschäfer, J. R., Yuezak, D., & Clemens, J. (2021). Fast and accurate annotation of acoustic signals with deep neural networks. Elife, 10, e68837. https://doi.org/10.7554/eLife.68837
https://janclemenslab.org/das/
Premoli2021
Premoli, M., Baggi, D., Bianchetti, M., Gnutti, A., Bondaschi, M., Mastinu, A., ... & Bonini, S. A. (2021). Automatic classification of mice vocalizations using Machine Learning techniques and Convolutional Neural Networks. PloS one, 16(1), e0244636. https://doi.org/10.1371/journal.pone.0244636
Goffinet2021
Goffinet, J., Brudner, S., Mooney, R., & Pearson, J. (2021). Low-dimensional learned feature spaces quantify individual and group differences in vocal repertoires. Elife, 10, e67855. https://doi.org/10.7554/eLife.67855
HybridMouse
Goussha, Y., Bar, K., Netser, S., Cohen, L., Hel-Or, Y., & Wagner, S. (2022). HybridMouse: A Hybrid Convolutional-Recurrent Neural Network-Based Model for Identification of Mouse Ultrasonic Vocalizations. Frontiers in behavioral neuroscience, 358. https://doi.org/10.3389/fnbeh.2021.810590
https://github.com/gutzcha/HybridMouse
TrackUSF
Netser, S., Nahardiya, G., Weiss-Dicker, G., Dadush, R., Goussha, Y., John, S. R., ... & Wagner, S. (2022). TrackUSF, a novel tool for automated ultrasonic vocalization analysis, reveals modified calls in a rat model of autism. BMC Biology, 20(1), 1-20. https://doi.org/10.1186/s12915-022-01299-y
https://github.com/shainetser/TrackUSF
BootSnap
Abbasi, R., Balazs, P., Marconi, M. A., Nicolakis, D., Zala, S. M., & Penn, D. J. (2022). Capturing the songs of mice with an improved detection and classification method for ultrasonic vocalizations (BootSnap). PLoS computational biology, 18(5), e1010049. https://doi.org/10.1371/journal.pcbi.1010049
https://github.com/ReyhanehAbbasi/BootSnap
AMVOC
Stoumpou, V., Vargas, C. D., Schade, P. F., Giannakopoulos, T., & Jarvis, E. D. (2021). Analysis of Mouse Vocal Communication (AMVOC): A deep, unsupervised method for rapid detection, analysis, and classification of ultrasonic vocalizations. bioRxiv. https://doi.org/10.1101/2021.08.13.456283
https://github.com/tyiannak/amvoc