9が奇数であることは偶然的か?
個体がある性質を必然的にもつか偶然的にもつかは、それがどう記述されるかによる。このことは、われわれが個々の事物を指示するのは記述によってである、という見解とおそらく深い関係がある。クワインの有名な例を思い起こそう。数9を考えてみると、それは必然的奇数性という性質をもつのだろうか。その数はすべての可能世界で奇数であることになるのだろうか。確かに9が奇数であることはすべての可能世界で真であり、言ってみればそれ以外ではありえないのである。もちろん、9は惑星の数としても同様に取り出せるであろう。惑星の数が奇数であることは必然的ではないし、すべての可能世界で真であるわけでもない。たとえば、もし惑星が8個であったとしたら、惑星の数は奇数ではなかったであろう。
まず、上の文章に関して、二点補足する。
1
『名指しと必然性』は1980年の著書であり(同上、p. 256)、そのためにこのようなずれが生じている。本稿では、『名指しと必然性』本文に合わせて、この現実世界の惑星の数は9つであるとして話を進める。
2
上の論証はクリプキ自身が支持するものではない。クリプキ自身は、「個体がある性質を必然的にもつか偶然的にもつかは、それがどう記述されるかによる」という考えについては否定していると思われる(同上、p. 47)。しかし、上のクワインの例について直接的に反論している箇所は見当たらない。また、上の「クワインの例」として挙げられている話の出典についても注等がないので、その詳細についてはよくわからない(特に調べてもいない)。 本稿では、上の引用部分で次のような論証がなされていると仮定する。
「クワインの例」より、「個体がある性質を必然的にもつか偶然的にもつかは、それがどう記述されるかによる」ということが帰結する
これに対する反論──すなわち、「クワインの例」からは必ずしも「個体がある性質を必然的にもつか偶然的にもつかは、それがどう記述されるかによる」ということは帰結しないということ──を考える。
まず、上の引用でなされている議論を整理する。
クワインの例から、「個体がある性質を必然的にもつか偶然的にもつかは、それがどう記述されるかによる」ということが帰結するためには、以下のステップを踏む必要があると考えられる。
(論証1)
(1)9(という個体)が「9」として記述される場合、9は「奇数である」という性質を必然的に持つ
(2)9(という個体)が「惑星の数」として記述される場合、9は「奇数である」という性質を偶然的に持つ
(3)(1)・(2)より9が「奇数である」という性質を必然的にもつか偶然的にもつかは、それがどう記述されるかによる
(4)(3)より、個体がある性質を必然的にもつか偶然的にもつかは、それがどう記述されるかによる
本稿では、上の(2)が誤りであることを示す。そのために、次のような例を考えたい。
3つの玉が入った箱があるとする。それぞれの玉には7、8、9という数字が書かれている。そして、一回だけその中からランダムに一つの玉を取り出すと想定する。
このとき、「これから取り出す球に書かれている数字」を仮にxとして、次のような文を作る。
(a)xが奇数であるのは偶然的である
この文は真であるように思われる。というのも、xに当てはまるのは7、8、9のいずれかであるが、もし7あるいは9の玉をとり、実際にxが奇数となったとしても、それは偶然のことだと考えられるからである。逆に言えば、もし、箱の中の入っているのが7の玉と9の玉だけだったとすれば、上の文は偽──すなわち「xが奇数であるのは必然的である」──となっただろう。
次に、実際に上の箱から玉を一つ取り出したとする。その玉の数字は9であった、つまり前述のxは9であったということになるが、このことから次の文が真であるとすることはできるだろうか。
(b)9が奇数であるのは偶然的である
できないと思われる。 なぜこのようなことが生じるのか。それは(a)と(b)では、それらの文が問題にしている事柄が変わっているからである。
前述のように、(a)の文における「偶然的である」というのは、「xが奇数以外の可能性もある」と書き換えられるようなものである。つまり、(a)で問題にされているのは、「ある数xがあり、そのxが奇数であるのは偶然的かどうか」(= 「xが奇数である」のは偶然的であるかどうか)ということである。
これに対して、(b)は「9」という数字そのものに関して、それが奇数であること(= 奇数という性質を持つこと)が偶然的であるかが問題になっている。言い換えれば、「ある奇数xがあり、そのxが奇数であるのは偶然的かどうか」(= xが「奇数であるのは偶然的である」かどうか)ということである。このように(a)、(b)は文の見かけの形は似ているが、その文が問題にしている事柄に差異がある。
そしてこの差異を混同してしまうことが、引用の論証の誤りにつながっていると考えられる。
最初の引用に戻ると、引用中の「惑星の数」という箇所は、上の玉取り実験の「x」に対応すると考えられる。つまり、「惑星の数が奇数であることは必然的ではない」──すなわち、偶然的である──ということで問題にされているのは、前述の(a)のような事柄においてである。
これに対して、「9が奇数であることはすべての可能世界で真であり、言ってみればそれ以外ではありえない」──すなわち、必然的である──ということで問題にされているのは、前述の(b)のような事柄においてである。
玉取り実験の例で見たように、この両者を混同することはできないので、「9は惑星の数としても取り出せる」──これは実験における9の玉を取り出した時点に対応する──としても、「9は「奇数である」という性質を偶然的に持つ」とすることはできない。それゆえ、(論証1)の(2)は否定される。
以上より、「クワインの例」からは「個体がある性質を必然的にもつか偶然的にもつかは、それがどう記述されるかによる」ということは帰結しない。
最後に。最初に引用した文章の続きは次のようになっている。
ニクソンが選挙に勝ったのは必然的だったのか偶然的だったのか、ということも同じように考えられる。(不可避の過程だったという見方をしない限り、それは偶然的に思われることだろう……)。しかしこれは、われわれが彼を「ニクソン」として指示する限りでのみ、ニクソンの偶然的な性質であるにすぎない(「ニクソン」は「しかじかの時点で選挙に勝った男」を意味しない、という仮定のもとで)。だが、もしニクソンを「一九六八年の選挙に勝った男」と呼ぶのであれば、一九六八年の選挙に勝った男が一九六八年の選挙に勝ったということは、もちろん必然的真理であろう。同様に、ある対象がすべての可能世界で同じ性質をもつかどうかは、その対象自身だけでなく、それがいかに記述されるかにも依存する。以上のような議論がなされている。
(『名指しと必然性』p. 46、ソール A. クリプキ著、八木沢敬、野家啓一訳)
このニクソンの例を用いた論証も、上の惑星の論証と同様に誤りを示せると思われる。多分。