generalized vorticity (or homomorphism between (U,V) and (U,J)-repr.)
homomorphism:$ h:\underbrace{G \times G}_{(G_D,\circ)} \to \underbrace{G \ltimes G}_{(G_S,\bullet)} ; (x,y) \mapsto (x,\underbrace{y x^{-1}}_{z}) ;$ (x_1,y_1)\circ(x_2,y_2) $ =(x_1x_2,y_1y_2) $ \mapsto (x_1x_2,y_1y_2(x_1x_2)^{-1}) $ =(x_1x_2,y_1y_2x_2^{-1}x_1^{-1}) $ =(x_1x_2, \ \underbrace{y_1x_1^{-1}}_{z_1} \ \overbrace{x_1 \ \underbrace{y_2x_2^{-1}}_{z_2} \ x_1^{-1}}^{\phi_{x_1}(z_1)}) $ = (x_1x_2,z_1x_1z_2x_1^{-1}) =: (x_1,z_1)\bullet(x_2,z_2)
homomorphic mapping of the right hand side of generalized vorticity equations
$ \small \newcommand{\U}{\underbrace} h^* ( \U { \hat D_D \hat\iota_{V_D} \hat D_D }_{\hat D_D L_{V_D} = L_{V_D} \hat D_D}\, \U{ \hat M_D V_D }_{\underline{M}_{D}}) = $ \small \newcommand{\U}{\underbrace} \overbrace{ \U{ h^* \hat D_D h_*^{-1} }_{\hat D_S}\, \U{ h_* \hat\iota_{V_D} (h^*)^{-1} }_{\hat\iota_{V_S}}\, \U{ h^* \hat D_D h_*^{-1} }_{\hat D_S} }^{D_SL_{V_S}\underline M=\ L_{V_S}D_S\underline M}\, \overbrace{ \U{ h_* \hat M_D (h^*)^{-1} }_{\hat M_S}\, \U{ h^* V_D }_{V_S} }^{\underline{M}_S}
速度空間、運動量空間の遷移:$ \mathbb V \overset{\hat M}{\longrightarrow} \mathbb M \overset{\hat D}{\longrightarrow} \mathbb V \overset{\hat\iota_V}{\longrightarrow} \mathbb M \overset{\hat D}{\longrightarrow} \mathbb V
$ \footnotesize h^* = \left(\begin{array}{cc} I & O \\ 1/\alpha & -1/\alpha \end{array}\right] , $ \footnotesize h^*V_D = \left(\begin{array}{cc} 1 & O \\ 1/\alpha & -1/\alpha \end{array}\right] \left[\begin{array}{c} U \\ V \end{array}\right]_D = \left(\begin{array}{c} U \\ (U-V)/\alpha \end{array}\right)=\left(\begin{array}{c} U \\ J \end{array}\right)_S ,
$ \footnotesize h_* = \left(\begin{array}{cc} 1 & 1 \\ 0 & -\alpha \end{array}\right] , $ \footnotesize h_* M_D= \left(\begin{array}{cc} 1 & 1 \\ 0 & -\alpha \end{array}\right] \left[\begin{array}{r} U+A/\alpha \\ -A/\alpha \end{array}\right]_D = \left(\begin{array}{c} U \\ A \end{array}\right)_S
$ \footnotesize {}^th_* h^* = \left[\begin{array}{cc} 1 & 0 \\ 1 & -\alpha \end{array}\right) \left(\begin{array}{cc} 1 & 0 \\ 1/\alpha & -1/\alpha \end{array}\right] = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right] = {}^t ({}^th_* h^*) = {}^th^* h_* より$ \footnotesize (h^*)^{-1} = {}^th_* = \left(\begin{array}{cc} 1 & 0 \\ 1 & -\alpha \end{array}\right] ,$ \footnotesize (h_*)^{-1} = {}^th^* = \left(\begin{array}{cc} 1 & 1/\alpha \\ 0 & -1/\alpha \end{array}\right] ,
$ \newcommand{\f}{\footnotesize} \f \hat M_D = \left[\begin{array}{rr} I + \frac{\f 1}{\f(\alpha\nabla\times)^2} & - \frac{\f1}{\f(\alpha\nabla\times)^2} \\ - \frac{\f1}{\f(\alpha\nabla\times)^2} & \frac{\f1}{\f(\alpha\nabla\times)^2} \end{array}\right] , $ \newcommand{\f}{\footnotesize} \f \hat M_S = \left(\begin{array}{cc} I & O \\ O & \frac{\f 1}{\f(\nabla\times)^2} \end{array}\right)
$ \footnotesize \hat D_D = \left[\begin{array}{cc} C_i\alpha\nabla\times & O \\ O & C_e\alpha\nabla\times \end{array}\right] , $ \footnotesize \hat D_S = \left(\begin{array}{cc} C_i\alpha\nabla\times & C_i\nabla\times \\ C_i\nabla\times & \displaystyle \frac{C_i+C_e}{\alpha}\nabla\times \end{array}\right) \overset{\alpha\to0}{\longrightarrow} \left(\begin{array}{cc} 0 & C_i\nabla\times \\ C_i\nabla\times & \displaystyle \tilde C_e\nabla\times \end{array}\right) where$ \footnotesize \tilde C_e := \lim_{\alpha\to0}\frac{C_i+C_e}{\alpha}
$ \newcommand{\ds}{\displaystyle} \footnotesize \hat W_D = \hat D_D \hat M_D = \left[\begin{array}{cc} C_i\alpha\nabla\times & O \\ O & C_e\alpha\nabla\times \end{array}\right] \left[\begin{array}{rr} \ds I + \frac{1}{(\alpha\nabla\times)^2} & \ds - \frac{1}{(\alpha\nabla\times)^2} \\ \ds - \frac{1}{(\alpha\nabla\times)^2} & \ds \frac{1}{(\alpha\nabla\times)^2} \end{array}\right] = \left[\begin{array}{rr} \ds C_i\alpha\nabla\times + \frac{C_i}{\alpha\nabla\times} & \ds - \frac{C_i}{\alpha\nabla\times} \\ \ds - \frac{C_e}{\alpha\nabla\times} & \ds \frac{C_e}{\alpha\nabla\times} \end{array}\right] ,
$ \newcommand{\f}{\footnotesize} \f \hat W_S = \hat D_S \hat M_S = \left(\begin{array}{cc} C_i\alpha\nabla\times & C_i\nabla\times \\ C_i\nabla\times & \displaystyle \frac{C_i+C_e}{\alpha}\nabla\times \end{array}\right) \left(\begin{array}{cc} I & O \\ O & \frac{\f 1}{\f(\nabla\times)^2} \end{array}\right) = \left(\begin{array}{cc} C_i\alpha\nabla\times & \frac{\f C_i}{\f\nabla\times} \\ C_i\nabla\times & \displaystyle \frac{C_i+C_e}{\alpha\nabla\times} \end{array}\right) $ \footnotesize \overset{\alpha\to0}{\longrightarrow} \left(\begin{array}{cc} 0 & \displaystyle \frac{C_i}{\nabla\times} \\ C_i\nabla\times & \displaystyle \frac{\tilde C_e}{\nabla\times} \end{array}\right)
渦度:$ \newcommand{\f}{\footnotesize} \f\Omega_D = \hat D_D \left(\begin{array}{r} U+A/\alpha \\ -A/\alpha \end{array}\right)_D = \left(\begin{array}{r} C_i(\alpha\nabla\times U+\nabla\times A) \\ -C_e\nabla\times A \phantom) \end{array}\right)_D
$ \footnotesize \Omega_S = \hat D_S \left(\begin{array}{c} \underline U \\ \underline A \end{array}\right)_S = \left(\begin{array}{c} C_i(\alpha\nabla\times U+\nabla\times A) \\ C_i\nabla\times U + \displaystyle \frac{C_i+C_e}{\alpha}\nabla\times A \end{array}\right)_S = \left(\begin{array}{c} C_i\alpha\nabla\times & C_i(\nabla\times)^{-1} \\ C_i\nabla\times & \displaystyle \tilde{C}_e(\nabla\times)^{-1} \end{array}\right)_S \left(\begin{array}{c} U \\ J \end{array}\right)_S
$ \newcommand{\f}{\footnotesize}\f \displaystyle \overset{\alpha\to0}{\longrightarrow} \left(\begin{array}{c} C_i\nabla\times A \\ C_i\nabla\times U + \tilde{C_e}\nabla\times A \end{array}\right)_S = C_i\left(\begin{array}{c} \nabla\times A \\ \nabla\times U \end{array}\right)_S + \tilde{C_e} \left(\begin{array}{c} 0 \\ \nabla\times A \end{array}\right)_S
(2025.5.30)$ \footnotesize \bm{\hat M_X} ,$ \footnotesize \bm{\hat D_X} ,$ \footnotesize \bm{\hat\iota_{V_X}} はそれぞれが対称行列(∇×を含むものは自己随伴作用素)
なので部分積分が(境界積分を除いて)次のように書ける:$ \footnotesize \int{\rm{d}}^3\vec x \ {}^t\!V_1 (\hat D V_2) = \int{\rm{d}}^3\vec x \ {}^t\!(\hat D V_2) V_1
なので作用の第1変分は$ \footnotesize \int{\rm{d}}^3\vec x \ {}^t\!(V) \hat M \overbrace{ ( \dot\xi \ \underbrace{ - \hat D \ \hat\iota_{V} \ \xi \ }_{ = L_V\xi = [\xi,V] } ) }^{ \dot\xi + [\xi,V] } $ \footnotesize = \int{\rm{d}}^3\vec x \ {}^t\!(\hat M V)( \dot\xi - \hat D \ \hat\iota_{V} \ \xi ) $ \footnotesize = - \int{\rm{d}}^3\vec x \ {}^t\!(\hat M \dot V) \xi - \int{\rm{d}}^3\vec x \ {}^t\!(\hat D \hat M V) (\hat\iota_{V}\xi) $ \footnotesize = \int{\rm{d}}^3\vec x \ {}^t\!( - \hat M \dot V + \!\!\!\!\!\!\! \underbrace{ \hat\iota_{V}\hat D \hat M }_{\Lambda(i)T_{ijk}と書ける} \!\!\!\!\!\!\! V )\xi $ \footnotesize \Longrightarrow \hat M \dot V = \hat\iota_{V} \hat D \hat M V $ \footnotesize \Longrightarrow \underbrace{ \dot\Omega }_{ \hat D\hat M \dot V } = \hat D \hat\iota_{V} \underbrace{ \Omega }_{ \hat D\hat M V }
ラグランジアン密度(の2倍):$ \footnotesize \underline M_D \cdot V_D = (U+\frac A\alpha) \cdot U + (-\frac A\alpha) \cdot (U - \alpha J ) = |U|^2 + A \cdot J = \underline M_S \cdot V_S …D-記述からS-記述へ
ヘリシティ密度:$ \footnotesize {}^{t}\!(\hat D \hat M V)(\hat M V) = \Omega \cdot \underline M= C_i(\alpha\nabla\times U+\nabla\times A) \cdot U + (C_i\nabla\times U + \displaystyle \frac{C_i+C_e}{\alpha}\nabla\times A ) \cdot A …S-記述での式
$ \footnotesize = C_i\alpha[\nabla\times ( U+\frac{A}{\alpha})] \cdot (U+\frac{A}{\alpha}) + C_e\alpha [\nabla\times (-\frac{A}{\alpha} )] \cdot (-\frac{A}{\alpha}) …PREで示したD-記述での式
(2025.5.3)渦度方程式$ \partial_t W_D に渦度演算子$ \hat W_D の固有モード展開を代入してアタマが混乱して気付いたのだが、発展方程式は$ \partial_t \underline M_X か$ \partial_t W_X であり、$ \partial_t V_X の形はない。発展方程式のモード展開はHamiltonの原理を逆になぞった$ \footnotesize \int V_X \cdot \partial_t \underline M_X d\vec x = \int V_X \cdot ( \widehat{\,\iota\,}_{V_X} \hat D_X \hat M_X V_X ) d\vec x でしか求められない…と思う。なぜなら右辺が力学系の基本構造であるLie括弧とRiemann計量の組み合わせの形だから。
ヘリシティ密度がMHD極限($ \alpha\to0 )で発散しない条件は$ \footnotesize \lim_{\alpha\to0} \left|\frac{C_i+C_e}{\alpha}\right|= \tilde C_e < \infty であるが、$ C_i \approx - C_e の物理的意味は、一様な外場(一様磁場$ B_0 やCoriolis力)下での線形波の解析の中でCoriolis力が無い状態に対応していることから類推するに「大規模構造による回転系的な影響を見ない」ことに相当していそうだ(2025.5.3改稿)。同じ運動なのに見え方に差があるってどうゆうこと?(2025.5.3追加)$ U - V = \alpha J なので$ U \approx V つまり、ほぼ電気的に中性であるだけでなく、そのcurl($ \Omega=\nabla\times U , $ B=\nabla\times A )についても強い縛りを与えている。渦度方程式としては$ C_i=0 はあり得ないが、$ \tilde{C}_e の成分を継ぎ足しても運動方程式は満たしている。で、この速度から渦度を生成する演算子$ \hat W := \hat D \hat M が helicity-based particle-relabeling operator である。
$ \footnotesize \hat\iota_{V} は微分2形式$ \omega_W (非発散場では線要素ベクトルと同じ変換則に従う)との内部積($ \iota_U\omega_W = \iota_U(\epsilon_{ijk} W^i dx^j \wedge dx^k) = \epsilon_{ijk} W^i U^j dx^k = ( \underbrace{ W \times U}_{線\times 線=面} )_k dx^k )を想定しているので、符号が逆になる:
$ \footnotesize -\widehat\iota_{V_D} = \left[\begin{array}{cc} \displaystyle \frac{1}{C_i\alpha}U\times & O \\ O & \displaystyle \frac{1}{C_e\alpha}V\times \end{array}\right] ,
$ \footnotesize -\hat\iota_{V_S} = \left(\begin{array}{cc} \displaystyle \frac{1}{C_i\alpha}U\times + \frac{1}{C_e\alpha}(U-\alpha J)\times & \displaystyle -\frac{1}{C_e}(U-\alpha J)\times \\ \displaystyle -\frac{1}{C_e}(U-\alpha J)\times & \displaystyle \frac{\alpha}{C_e}(U-\alpha J)\times \end{array}\right) = \left(\begin{array}{cc} \displaystyle \left( \frac{C_i+C_e}{C_iC_e\alpha}U - \frac{1}{C_e}J \right) \times & \displaystyle -\frac{1}{C_e}(U-\alpha J)\times \\ \displaystyle -\frac{1}{C_e}(U-\alpha J)\times & \displaystyle \frac{\alpha}{C_e}(U-\alpha J)\times \end{array}\right)
$ \footnotesize -\hat\iota_{V_D} \hat D_D = \left[\begin{array}{cc} \displaystyle \frac{1}{C_i}U\times ( C_i\nabla\times * ) & O \\ O & \displaystyle \frac{1}{C_e}V\times ( C_e\nabla\times * ) \end{array}\right] $ \footnotesize = \left[\begin{array}{cc} \displaystyle U\times ( \nabla\times * ) & O \\ O & \displaystyle V\times ( \nabla\times * ) \end{array}\right]
$ \footnotesize -\hat\iota_{V_S} \hat D_S = \left(\begin{array}{cc} \displaystyle \frac{1}{C_i\alpha}U\times + \frac{1}{C_e\alpha}(U-\alpha J)\times & \displaystyle -\frac{1}{C_e}(U-\alpha J)\times \\ \displaystyle -\frac{1}{C_e}(U-\alpha J)\times & \displaystyle \frac{\alpha}{C_e}(U-\alpha J)\times \end{array}\right) \left(\begin{array}{cc} C_i\alpha\nabla\times & C_i\nabla\times \\ C_i\nabla\times & \displaystyle \frac{C_i+C_e}{\alpha}\nabla\times \end{array}\right) $ \footnotesize = \left(\begin{array}{cc} \displaystyle \frac{1}{C_i}U\times ( C_i\nabla\times * ) & \displaystyle \frac{1}{C_i\alpha}U\times ( C_i\nabla\times * ) - \frac{1}{C_e\alpha}V\times ( C_e\nabla\times * )\\ O & \displaystyle \frac{1}{C_e}V\times ( C_e\nabla\times * ) \end{array}\right) $ \footnotesize = \left(\begin{array}{cc} U \times ( \nabla\times * ) & J \times ( \nabla\times * ) \\ O & (U-\alpha J)\times ( \nabla\times * ) \end{array}\right)
$ \footnotesize -\hat D_S \hat\iota_{V_S} = \left(\begin{array}{cc} C_i\alpha\nabla\times & C_i\nabla\times \\ C_i\nabla\times & \displaystyle \frac{C_i+C_e}{\alpha}\nabla\times \end{array}\right)\left(\begin{array}{cc} \displaystyle \frac{1}{C_i\alpha}U\times + \frac{1}{C_e\alpha}(U-\alpha J)\times & \displaystyle -\frac{1}{C_e}(U-\alpha J)\times \\ \displaystyle -\frac{1}{C_e}(U-\alpha J)\times & \displaystyle \frac{\alpha}{C_e}(U-\alpha J)\times \end{array}\right) $ \footnotesize = \left(\begin{array}{cc} \nabla \times ( U\times * ) & O \\ \nabla \times ( J \times * ) & \nabla \times ( (U-\alpha J) \times * ) \end{array}\right)
$ \footnotesize \hat D_S \hat\iota_{V_S} はベクトル場に作用する。半直積群のLie代数のLie括弧がきれいに導出できている。
MHD極限でヘリシティが発散しない:$ \footnotesize \frac{C_i+C_e}{\alpha} \lesssim O(1) ならば$ \footnotesize \hat\iota_{V_S} \sim \left(\begin{array}{cc} \displaystyle O(1) & \displaystyle O(1) \\ \displaystyle O(1) & \displaystyle O(\alpha) \end{array}\right) , $ \footnotesize \hat D_S\sim \left(\begin{array}{cc} O(\alpha) & O(1) \\ O(1) & \displaystyle O(\frac{C_i+C_e}{\alpha}) \lesssim O(1) \end{array}\right) であり、先に$ \alpha\to0 の極限を取った計算ができそう。$ \footnotesize C_e = - C_i + \alpha \tilde C + o( \alpha) とする;
$ \footnotesize -\hat\iota_{V_S} \hat D_S = \left(\begin{array}{cc} \displaystyle \left( -\frac{\tilde C}{C_i^2}U + \frac{1}{C_i} J \right) \times & \displaystyle \frac{1}{C_i}U\times \\ \displaystyle \frac{1}{C_i} U \times & O \end{array}\right) \left(\begin{array}{cc} O & C_i\nabla\times \\ C_i\nabla\times & \tilde C \nabla\times \end{array}\right) $ \footnotesize = \left(\begin{array}{cc} U \times ( \nabla\times * ) & J \times ( \nabla\times * ) \\ O & U\times ( \nabla\times * ) \end{array}\right)
$ \footnotesize - \hat D_S \hat\iota_{V_S} = \left(\begin{array}{cc} O & C_i\nabla\times \\ C_i\nabla\times & \tilde C \nabla\times \end{array}\right) \left(\begin{array}{cc} \displaystyle \left( -\frac{\tilde C}{C_i^2}U + \frac{1}{C_i} J \right) \times & \displaystyle \frac{1}{C_i}U\times \\ \displaystyle \frac{1}{C_i} U \times & O \end{array}\right) $ \footnotesize = \left(\begin{array}{cc} \nabla \times ( U \times * ) & O \\ \nabla \times ( J \times * ) & \nabla \times ( U \times * ) \end{array}\right)
$ \footnotesize \tilde C は消えるのは当然なのだが、極限を取る順番に依らないところが肝心。
蛇足:この記述では微分形式の外微分の公式$ d\circ d = 0 , Lie微分の公式$ L_V=d\circ \iota_V + \iota_V\circ d ,$ dL_V=L_Vd=d\circ \iota_V\circ dが見えにくい。